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Background and Project Team
 Project Title: "Applying NASA HyspIRI satellite observations to precision 

vegetation mapping for ecological forecasting applications," NASA, 2009-
2011.

 PIs:
 Dr. Lori M. Bruce (Electrical Engineering, Mississippi State University)
 Dr. Saurabh Prasad (Electrical Engineering, Mississippi State University) (Technical Lead-

Statistical Pattern Recognition)

 Collaborator: 
 Dr. Wilfredo Robles (Department of Plant and Soil Sciences , University of Puerto Rico) 

(Dataset provider – providing us with a library of hyperspectral samples from a variety 
of aquatic plant species). 
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Outline of this presentation
 Background – Pattern classification in the context of high-dimensional 

feature spaces (Direct relevance to Hyperspectral image analysis)

 Review of conventional methods

 The divide-and-conquer paradigm – a Multi-Classifier, Decision Fusion 
(MCDF) Framework

 Experimental analysis with:  
- Simulated/Proxy-HyspIRI data

 Conclusions and ongoing work
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Statistical Pattern Classification 
Systems

Some examples: Face recognition, target recognition and land cover classification in 
remote sensing applications, CAD medical applications, speech and speaker 
recognition …

Feature 
extraction

Modeling class 
distributions Decision

making
Feature 

extraction

Raw 
training 
signals

Raw 
test

signals

from the
data-acquisition 

modality

Suitable 
pre-processing
and projection

Classification algorithms

“Feature vectors”



5

Hyperspectral Remote Sensing 
Systems
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The Proposed Framework – Multi-
classifiers and Decision Fusion (MCDF)

Mutual Information

Approximately independent subspaces  diverse classifiers
Diverse classifiers  Better decision fusion

Global Mutual Information Matrix, Waterhyacynth and American Lotus
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The Proposed Framework – Multi-classifiers 
and Decision Fusion (MCDF)

PP: An appropriate pre-processing
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Multi-Classifiers and Decision 
Fusion: Subspace Identification

 Use training data 
for Band-Grouping

 Identify subspaces 
by maximizing 
some performance 
metric
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Multi-Classifiers and Decision 
Fusion: Decision Fusion Strategies

Hard Decision Fusion

 Majority Vote:

 Weighted Majority Vote:
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Multi-Classifiers and Decision Fusion: 
Decision Fusion Strategies

Soft Decision Fusion
 Linear Opinion Pool

 Logarithmic Opinion Pool
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Multi-Classifiers and Decision Fusion: 
Adaptive Weight Assignment
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Experimental hyperspectral dataset

Target

Background
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Severe pixel mixing
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Practical Classification Tasks
Invasive Species Classification

Precision mapping of aquatic 
vegetation

HyspIRI VSWIR Specifications:

 Spectral range: 380 to 2500 nm, Uniformly sampled @ 10nm

 A spatial resolution of 60 m.

 Temporal revisit: 19 days (Global land coast), 3 days (Rapid response)
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Practical Classification Task 1
Invasive Species Classification – Waterhyacynth vs. American 

Lotus

Figure: 2151 band ASD data and sample Gaussian averaging window locations (left), 212 band Proxy HyspIRI data generated from the ASD data (right) using the bank of averaging
windows spaced 10nm apart, with a Full-Width Half Maximum (FWHM) bandwidth of 10nm.

A possible remote sensing application for such species may involve detecting and mapping Waterhyacinth in aquatic
environments for appropriate chemical treatment and removal. The two aquatic species were grown under well-regulated
environmental conditions at the R. R. Foil Plant Research Center at Mississippi State University. Data was collected in the range
of ±2 hours of solar noon, every week from 24th June 2005 to 26th October 2005, for a total of twenty signatures per class per
date.
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American Lotus
Gaussian averaging windows
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Practical Classification Task 1
Invasive Species Classification – Waterhyacynth vs. American 

Lotus
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Practical Classification Task 1
Invasive Species Classification – Waterhyacynth vs. American 

Lotus
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Practical Classification Task 2
Another aquatic species classification task: Duckweed; Hydrilla; American Lotus; 

Eurasian watermilfoil; Salvinia; Waterhyacinth Water
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Practical Classification Task 2
Another aquatic species classification task: Duckweed; Hydrilla; American Lotus; 

Eurasian watermilfoil; Salvinia; Waterhyacinth; Water
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Practical Classification Task 3
Detection and Classification of Chemical Induced Crop Stress 

Ground-Truthing with Handheld (ASD) 
Spectroradiometers and GPS units
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Increasing chemical stress (~dosage) on the crop

Practical Classification Task 3
Detection and Classification of Chemical Induced Crop Stress 



21

Practical Classification Task 3
Detection and Classification of Chemical Induced Crop Stress 
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Practical Classification Task 3
Detection and Classification of Chemical Induced Crop Stress 

Target Abundance (%)

Performance of classification algorithms with temporal misalignments 
between training and testing using proxy-HyspIRI data

Overall Classification Accuracy (%)
Temporal

Misalignment PCA LDA SLDA MCDF

±1 week 60.5 (1.6) 50.1 (1.7) 97.7 (0.4) 99.7 (0.2)

±2 week 58.6 (1.6) 54.1 (1.7) 97.1 (0.5) 97.7 (0.5)

±4 week 56.7 (1.7) 53.2 (1.7) 73.1 (1.0) 92.6 (0.5)

±6 week 52.8 (1.7) 52.3 (1.7) 72.2 (1.3) 74.5 (1.0)

±8 week 46.6 (1.7) 53.2 (1.7) 58.6 (1.6) 62.0 (1.5)
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Saurabh Prasad
saurabh.prasad@ieee.org

Question / Comments
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