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IntroductionIntroduction
In 1995, Alan Longhurst introduced the concept of  
biogeochemical “provinces” in the oceans 
(Longhurst 1995, 1998; Figure 1). This province 
concept was based on climatological data of mixed 
layer depth, Brunt-Vaisala frequencies, Rossby
radius of deformation, photic zone depth, and 
surface nutrient fields. This concept provided a 
framework to compare and contrast 
biogeochemical processes over broad regions of 
the global ocean. Province designations have 
been used to understand global distributions of 
primary productivity, DMSP fluxes, distributions of 
pelagic flora and fauna and other 
biogeochemically relevant parameters (Ducklow
2003; Boyd and Doney 2003; Waniek et al 2005). 
As a result, the province model influenced the 
shaping of our understanding of biogeochemical 
cycles of the global ocean. 
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Figure 1: Longhurst’s geographic distribution of provinces (From 
Ducklow, 2003).
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What has been difficult to assess is the spatial 
and temporal variability in the provinces, which 
are known to be important on both short term 
(days to weeks) and long term (Pacific Decadal 
Oscillation [PDO], North Atlantic Oscillation 
[NAO]) time scales. The temporal variability of 
province distribution and interaction remains one 
of the most vexing issues in discriminating 
between secular changes (i.e., anthropogenically
induced trends) and decadal cycles in the ocean 
system (i.e., natural variability). In the time since 
the first CZCS image was processed, 
atmospheric CO2 levels have risen ~ 40 ppm, 
global chlorophyll concentrations have increased 
by 22% (Antione et al 2005). Furthermore, global 
nitrate available at the ocean surface has 
decreased significantly in the last century 
(Kamykowski and Zentara 2005). While oceanic 
biogeochemical provinces oscillate seasonally, 
there appears to be a secular change in oceanic 
provinces, the underlying causes of which we 
know little about. A clearer understanding of the 
processes that control the distribution of oceanic 
provinces requires an objective method to 
resolve these water masses in a time-dependent 
manner (Platt and Sathyendranath 1999).  We 
propose to develop and implement a 
biogeochemical classification scheme that 
overcomes the technical difficulties of fixed 
boundary province classification in order to 
objectively elucidate the time and space 
dependent distribution of provinces.
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By implementing a biogeochemical province 
classification system that is time and space 
resolved, we hope to answer these questions”

• How does the annual cycle affect the distribution 
of provinces?

• How much do inter-annual cycles modulate 
province distribution and cause deviations from 
the annual cycle?

• Do episodic events like large dust storms rapidly 
change the distribution of the provinces?

• Are there trends in regional or global primary 
productivity based on province distribution?
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There are two major obstacles to circumvent if we 

are to achieve our goals:

1. Identify data sets with synoptic coverage that 
contain the same information as Longhurst
used.

2. Determine a way to objectively classify 
provinces in a dynamic way.
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Solution to Obstacle #1: Combined Satellite 
Coverage of Sea Surface Temperature and 
Ocean Color

Along with climatological chlorophyll values 
from the CZCS sensor and ship-based 
measurements, the Longhurst approach to 
province specification includes global climatologies 
of mixed layer depth, Brunt-Vaisala frequencies, 
Rossby radius of deformation, photic zone depth, 
and surface nutrient fields. While all of these 
parameters are relevant (to varying degrees) to 
upper ocean biogeochemistry, there is a high 
degree of autocorrelation between these 
parameters. For example, mixed layer depth, 
Brunt-Vaisala frequency, Rossby radius of 
deformation and nutrient fields are all significantly 
correlated to sea surface temperature on a global 
scale. Furthermore, water column integrated 
chlorophyll concentrations, photic depth and 
nutrient fields are significantly correlated to ocean 
color. Therefore, the global time series of satellite 
ocean color and sea surface temperature provide 
a significant amount of discrimination power in 
determining the locations of biogeochemical 
provinces (Esaias et al 2000). Through the use of 
satellite data, we gain the temporal resolution
required to infer the dynamics of the boundaries of 
biogeochemical provinces on seasonal, annual 
and inter-annual time scales. 
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Solution to Obstacle 2: Use bioinformatic 
algorithm to objectively locate provinces in 
space and time.
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The bioinformatic approach we propose to 
objectively classify biogeochemical provinces in 
the global ocean has six general steps; i) 
concomitant passes of ocean color and sea 
surface temperature (SST) are merged spatially, ii) 
SST and Ocean Color Parameters are 
standardized to their relative means, iii) 
standardized data are projected into 
multidimensional parameter space and clustered 
by an ensemble of clustering algorithms, iv) a 
Figure of Merit is calculated which determines the 
likely number water masses/provinces, v) surface 
water mass/province boundaries are mapped, vi) 
the relative strengths of the boundaries are 
assessed through multidimensional gradient 
analysis (Figure 2, Oliver et al. 2003). 
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Figure 2: Flow diagram of this analysis. The following case study of 
the Mid-Atlantic Bight will detail the method. 
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Figure 3: Temperature and reflectance maps on 8/02 2002 in this 
analysis. 
Figure 3: Temperature and reflectance maps on 8/02 2002 in this 
analysis. 

Principal components analysis indicated SST, 
Rrs(490) and Rrs(555) were the largest contributors to 
the variance in the data set (96%).

Data were standardized by subtracting their 
respective mean and dividing by their respective 
standard deviation to equally weight SST, Rrs(490) 
and Rrs(555).
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K-MeansK-Means

Data are divided from 1 to k clusters where k is the 
number of clusters requested by the user. To form k 
clusters, k cluster centers are randomly initialized in 
predictor space. Data are then assimilated into cluster 
centers as to minimize the within cluster sum of 
squares. 
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Fuzzy C-MeansFuzzy C-Means
Similar to K-means, except this algorithm clusters 
initial cluster centroids through competitive learning. 
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initial cluster centroids through competitive learning. 

Figure of MeritFigure of Merit
A major difficulty in cluster analysis is determining 
how many clusters (or provinces) should be used 
to describe a data set as each observation could 
theoretically represent its own cluster. The Figure 
of Merit (FOM) algorithm was designed to 
calculate the difference between expression 
vectors of genes (Yeung et al 2001); here it is 
used to analyze the inherent structure of clusters 
in predictor space detected by the clustering 
algorithms. In this case, “gene” expression 
vectors were standardized values of SST, Rrs(490) 
and Rrs(555) at each pixel. 
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where c is one of the four clustering algorithms, n is the total number of observations, i
=1-3 indexes the three variables measured at each pixel, j is the cluster number, k is 
the number of clusters each data set was divided into, l is a specific observation of the 
total number of pixels m in cluster j, aijl is the specific standardized observation of 
predictor i in cluster j, and āij is the mean for each cluster.

•This function is essentially a measure of the 
variation within clusters as a function of cluster 
number (Figure 4).
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Figure 4: Figure of Merit (FOM), Average Slope Function (ASF) and 
Threshold of Acceptable Flatness (TAF) calculation for each of the 
four days with the results of each of the clustering algorithms. A 
large FOM indicates that the variance within each cluster is 
comparatively large and that the cluster centroid is a generally poor 
predictor of the other data points within each cluster. A small FOM 
indicates that the cluster centroid better predicts the other members 
of its cluster, and that the variance with in the cluster is 
comparatively small. ASF is the average percent change of the four 
clustering algorithms compared to the maximum FOM. TAF was 
defined when the average change in the ASF was less than 1% for 
more than three clusters, and represents the maximum possible 
number of different water types.
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to determine what the average decrease in the FOM was 
as clusters were added.  
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where is the maximum value for a specific cluster algorithm c. 

• A Threshold of Acceptable Flatness (TAF) was 
defined at the smallest cluster k where  < 0.01 (< 
1% decrease in  relative to the maximum ) for 
three or more. consecutive clusters. 

• The use of the ASF and TAF established an 
upper bound for what we believed to be 
reasonable cluster numbers or water type 
assignments by the suite of clustering algorithms. 
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Clusters defined in a data set occupy predictor 
space represented by standardized SST, Rrs(490) 
and Rrs(555) and physical space represented by 
latitude and longitude.

The mapping of defined water types for any 
cluster number k and clustering algorithm c into 
physical space (this case in dimensions of latitude 
and longitude) defines physical boundaries 
between provinces. 

Because of this, a physical space representation 
of the clusters was used to determine which 
boundaries occurred most often by constructing a 
2-d histogram for boundaries at 2 ≤ k ≤ TAF 
(Figure 5A). 
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determine how different water types were in 
predictor space in relation to geographic space 
(Figure 5C).
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where SST’ is standardized sea surface temperature, Rrs(490)’ is standardized Rrs(490),
Rrs(555)’ is standardized Rrs(555), Dx→x+∆x is the standardized predictor space distance 
between x and x+∆x (Longitude), Dy→y+∆y is the standardized predictor space distance 
between y and y+∆y (Latitude), and  gradient in predictor space with respect to  and . 
While the boundary analysis determines likely locations of water mass boundaries, 
∇G(x,y) describes the strength of boundaries through simultaneous analysis of SST, 
Rrs(490), and Rrs(555).
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Figure 5: A) An example of provinces /water masses objectively 
classified in the Mid-Atlantic Bight. Boundaries show the presence of 
a near-shore upwelling region and the shelf-break front. B) The 
horizontal branch lengths between classified regions in the 
relatedness tree are proportional to the difference in ocean color and 
SST between regions. C) The magnitude of parameter space gradient 
indicates how different provinces are across a boundary. The 
strongest gradients are between regions 2 and 5, indicating the waters 
on either side of the boundary are very different; as opposed to the 
shelf break front boundary between regions 5 and 7, which is weak in 
comparison.
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GoalsGoals Validation of BoundariesValidation of Boundaries
This algorithm was independently validated by 
ship-board salinity (Figure 6) and nutrient (Figure 
7) transects.

This algorithm was independently validated by 
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7) transects.

Figure 6: The bioinformatic approach using SST and Ocean to detect 
provinces/water masses near the Hudson River was validated with ship 
based salinity tracks for two separate days. Salinity changes are 
concomitant with objectively detected boundaries from space, thus 
validating their presence. The nearshore boundaries appear to be the 
strongest. Also, surface currents measured by CODAR show boundaries 
detected by this method are in convergent and divergent areas.
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Figure 7: Independent test 
of boundary analysis with 
nitrate as an independent 
predictor. Black areas 
indicate areas of cloud 
contamination or land. A) 
This analysis indicates that 
nitrate levels in the “bulge”
are very high while on the 
other side of the bulge 
boundary they are typical 
of open ocean values. B) In 
addition, there are 
relatively high values of 
silicate present in an old 
river plume that is being 
advected offshore. 
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In our regional analysis described above, we 
believe that we have a solution for the major 
obstacles that must be resolved before a 
dynamic, objective elucidation of 
biogeochemical provinces can be employed by:

1. Using the available SST and ocean color 
satellite databases.

2.  Employ a version of a bioinformatic algorithm to 
objectively and statistically determine the 
location and dimensions of ocean provinces.

In our regional analysis described above, we 
believe that we have a solution for the major 
obstacles that must be resolved before a 
dynamic, objective elucidation of 
biogeochemical provinces can be employed by:

1. Using the available SST and ocean color 
satellite databases.

2.  Employ a version of a bioinformatic algorithm to 
objectively and statistically determine the 
location and dimensions of ocean provinces.

ReferencesReferences
Antioine, D., A. Morel, H. R. Gordon, V. F. Banzon, R. H. Evans 2005. Bridging ocean color 

observations of the 1980s and 2000s in search of long-term trends. J. Geophys. Res., 110, 
C06009, doi:10.1029/2004JC002620.

Boyd, P. W. and S. C. Doney. 2003. Impact of Climate Change and Feedback Processes on the Ocean 
Carbon Cycle, in Ocean Biogeochemistry, Ed. M. Fasham. Springer, New York.

Ducklow, H. 2003, Biogeochemical Provinces: Towards a JGOFS Synthesis, in Ocean Biogeochemistry, 
Ed. M. Fasham. Springer, New York.

Esaias, W. E., R. L. Iverson, and K. Turpie. 2000. Ocean province classification using ocean colour data: 
observing biological signatures of variations in physical dynamics. Glo. Ch. Biol. 6:39-55.

Antioine, D., A. Morel, H. R. Gordon, V. F. Banzon, R. H. Evans 2005. Bridging ocean color 
observations of the 1980s and 2000s in search of long-term trends. J. Geophys. Res., 110, 
C06009, doi:10.1029/2004JC002620.

Boyd, P. W. and S. C. Doney. 2003. Impact of Climate Change and Feedback Processes on the Ocean 
Carbon Cycle, in Ocean Biogeochemistry, Ed. M. Fasham. Springer, New York.

Ducklow, H. 2003, Biogeochemical Provinces: Towards a JGOFS Synthesis, in Ocean Biogeochemistry, 
Ed. M. Fasham. Springer, New York.

Esaias, W. E., R. L. Iverson, and K. Turpie. 2000. Ocean province classification using ocean colour data: 
observing biological signatures of variations in physical dynamics. Glo. Ch. Biol. 6:39-55.

Kamykowski, D. and S. Zentara. 2005. Changes in world ocean nitrate availability through the 20th 
century. Deep-Sea Res. I (available on-line and in press)

Longhurst, A. R. 1995. Seasonal cycles of pelagic production and consumption. Prog. Oceangr. 36:1507-
1526.

Longhusrt, A. R. 1998. Ecological geography of the sea. Academic, San Diego, 398pp.
Oliver, M. J., Kohut, J. T., Irwin, A. J., Glenn, S. M., Schofield, O., Moline, M. A., Bissett, W. P. 2003. 

Bioinformatic Approaches for Objective Detection of Water Masses on Continental 
Shelves. J. Geophys. Res. 109, C07S04,doi:10.1029/2003JC002072.

Platt, T. and S. Sathyendranath. 1999. Spatial structure of pelagic ecosystem processes in the global 
ocean. Ecosystems, 2:384-394.

Waniek, J. J., D. E. Schulz-Bull, J. Kuss, T. Blanz. 2005. Long time series of deep water particle flux in 
three biogeochemical provinces of the northeast Atlantic. J. Mar. Sys. 56:391-415.

Kamykowski, D. and S. Zentara. 2005. Changes in world ocean nitrate availability through the 20th 
century. Deep-Sea Res. I (available on-line and in press)

Longhurst, A. R. 1995. Seasonal cycles of pelagic production and consumption. Prog. Oceangr. 36:1507-
1526.

Longhusrt, A. R. 1998. Ecological geography of the sea. Academic, San Diego, 398pp.
Oliver, M. J., Kohut, J. T., Irwin, A. J., Glenn, S. M., Schofield, O., Moline, M. A., Bissett, W. P. 2003. 

Bioinformatic Approaches for Objective Detection of Water Masses on Continental 
Shelves. J. Geophys. Res. 109, C07S04,doi:10.1029/2003JC002072.

Platt, T. and S. Sathyendranath. 1999. Spatial structure of pelagic ecosystem processes in the global 
ocean. Ecosystems, 2:384-394.

Waniek, J. J., D. E. Schulz-Bull, J. Kuss, T. Blanz. 2005. Long time series of deep water particle flux in 
three biogeochemical provinces of the northeast Atlantic. J. Mar. Sys. 56:391-415.

Yeung, K. Y., D. R. Haynor and W. L. Ruzzo, Validating clustering for gene expression data, Bioinformatics, 
17(4), 309-318, 2001.

Yeung, K. Y., D. R. Haynor and W. L. Ruzzo, Validating clustering for gene expression data, Bioinformatics, 
17(4), 309-318, 2001.

The support of the National Ocean Partnership Program (N00014-97-1-1019), the Office of Naval 
Research COMOP and HyCODE programs (N00014-97-0767, N00014-99-0196) and the NSF EEGLE 
program (OCE-9727341, OCE-9727342) are gratefully acknowledged. We especially thank Mike 
Crowley and Jen Bosch for providing cloud masking and processing of the satellite data. The other 
ONR supported researchers are thanked for patience/humor when working in the Jersey swamps. We 
toast our fellow COOL faculty, students, and research staff (http://www.marine.rutgers.edu/cool) with 
good beer.  Finally, the continuing support from the great state of New Jersey is acknowledged.

The support of the National Ocean Partnership Program (N00014-97-1-1019), the Office of Naval 
Research COMOP and HyCODE programs (N00014-97-0767, N00014-99-0196) and the NSF EEGLE 
program (OCE-9727341, OCE-9727342) are gratefully acknowledged. We especially thank Mike 
Crowley and Jen Bosch for providing cloud masking and processing of the satellite data. The other 
ONR supported researchers are thanked for patience/humor when working in the Jersey swamps. We 
toast our fellow COOL faculty, students, and research staff (http://www.marine.rutgers.edu/cool) with 
good beer.  Finally, the continuing support from the great state of New Jersey is acknowledged.


