REMOTE SENSING OF VEGETATION 3-D STRUCTURE Quantifying Patterns & Understanding Processes

Sassan S. Saatchi Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91109 Tel: 818-354-1051 Fax: 818-393-5285 Email: <u>saatchi@congo.jpl.nasa.gov</u>

2006 NASA WORKSHOP August 21-25, 2006, UMD

Global distribution of vegetation biomass to quantify terrestrial carbon stock

Vegetation structure and biomass to model and understand ecosystem function and disturbance and recovery processes

Spatial patterns of vegetation structure to characterize habitats and to understand underlying processes of biological diversity

Annual ter	restrial flux c	of carbon in the 1990.	$s (PgC yr^{-1})$	
	O_2 and CO_2	Inverse calculations	Forest	Land-use
		CO ₂ , ¹³ CO ₂ , O ₂	inventories	change
Globe	-0.7	-0.8	_	2.2
Northern mid-latitude	-	-1.8	-0.65	-0.03
Tropics	-	0.6 to 1.2 Source	??	0.5 to 3.0 Source

Five scenarios:

- 1. Houghton (2003) (Reference)
- 2. Achard et al. (2004)
- 3. DeFries et al. (2002)
- 4. Adjust starting biomass to yield FAO 2000 biomass
- 5. Adjust starting biomass to yield FAO 1980 biomass, and try to obtain 1990 and 2000 biomass by shifting the forest types deforested

Mapping Disturbance and Recovery

Yellowstone National Park

2003 Burn

1988 Burn

Pine Beatle Disease

Impact of Disturbance on US Carbon Sequestration Pool

Early estimates from forest inventories indicate potential timber losses from Hurricane Katrina alone amount to roughly 4.2 billion cubic feet of timber (15-19 billion board feet), spread over 5 million acres of light to heavily damaged forest land in Mississippi, Alabama, and Louisiana.

Blowdowns in the Amazon Basin

Chambers et al.

Images taken ~1.5 years after the event, whereas satellite imagery in the previous slide were taken ~6 months after the event. The edge of blowdowns can be readily identified, with vegetation rapidly filling up the disturbed area, revealing a rapid loss of the woody signal associated with downed trees. Ongoing field investigations at INPA with Niro Higuchi are quantifying mortality rates along the mapped disturbance gradient.

Sources of Uncertainties

- Land cover and land use change (deforestation, reforestation, cultivation, logging)
- 2. Wood debris, forest floor, soils
- 3. CO_2 fertilization, changes in climate (regrowth, enhanced regrowth)
- 4. Woody Encroachment, Woodland thickening
- 5. Wood products
- 6. Sediments and river transports
- 7. Biomass stock

Volume-to-biomass, age-to-biomass

- 8. Disturbances
 - (fire, insects)

	Pacala et al. (2001)* Estimated rate of carbon accumulation in the US (PgCyr ⁻¹ in 1990)				
	Low	High	Houghton et al. (1999) [†]	Houghton (in press) †	Goodale et al. (2002)
Forest trees	-0.11	-0.15	-0.072 [‡]	$-0.046^{\$}$	-0.11
Other forest organic matter	-0.03	-0.15	0.010	0.010	-0.11
Cropland soils	0.00	-0.04	-0.138	0.00	NE
Woody encroachment	-0.12	-0.13	-0.122	-0.061	NE
Wood products	-0.03	-0.07	-0.027	-0.027	-0.06
Sediments	-0.01	-0.04	NE	NE	NE
Total sink	-0.30	-0.58	-0.35	-0.11	-0.28
% of total sink neither in forests nor wood products	43%	36%	74%	55%	NE

Plant communities are heterogeneous in their structure & function

Structure is important for:

predicting current and future biophysical and biogeochemical functioning.

predicting the resilience of ecosystems to climatological perturbation

Canopy Process Models

H. Shugart

Big-leaf models tend to predict unrealistic long-term ecosystem dynamics

e.g.: IBiS evergreen PFT above-ground biomass dynamics

Comparison of above-ground biomass dynamics to observations at San Carlos (tropical forest) 2°N,68°W:

P. Moorcroft

Material Flow Models

Dynamic Global Vegetation Models or

DGVM's

Biogeographic Approaches

Changes in Carbon under different cases 2 Climate Scenarios \times 2 CO₂ cases \times 6 DGVM's

H. Shugart

Dynamic Global Vegetation Models or DGVM'S

The Ideal

One important step in improving our models of global ecosystem dynamics is to incorporate the effects of structure. H. Shugart Equivalent Structures with Respect to One Variable Can Be Different with Respect to Other Variables

Large and Small Scale Dynamics are Different and Influenced by Structure

Small-Scale Dynamics

Large-Scale Dynamics

Time

(a)

Biomass

Different Landscape Configurations vary in Structure, Composition and Performance

Differences in Distributions of Species of Trees on Wisconsin Woodlots

Fraxinus sp.

Tilia americana

Fagus grandifolia

Landscape Patterns and Geomorphology in Central Amazon

Global Measurements of Vegetation Structure and Biomass

Global measurement of above ground biomass in forested ecosystems to estimate the terrestrial carbon stock.

Global measurement of changes of carbon stock of forested ecosystems as a result of processes of disturbance and recovery to accurately model terrestrial carbon dynamics

Measurements of 3-dimensional forest structure to define and model forest Ecosystem dynamics and habitat biodiversity of forested ecosystems.

Spatial Capability

Sensors Measuring Vegetation Structure and Biomass

Active Sensors LIDAR RADAR

Passive Sensors

Multi-angle optical Spectrometers Hyperspectral Multispectral Microwave Radiometers Above Ground Biomass Density(AGBD)

$$AGBD = \frac{1}{A} \sum_{i} \frac{\pi D_i^2}{4} H_i T_i W_i$$
$$Vol = \frac{1}{A} \sum_{i} \frac{\pi D_i^2}{4} H_i$$
$$BA = \frac{1}{A} \sum_{i} \frac{\pi D_i^2}{4}$$

A: Area sampled

- D: Diameter at Breast Height, DBH
- H: Tree Height
- T: Tapering Factor (species dependent)
- W: Wood Density (species dependent)

Wood density decreases as a function of tree height

Water content(dielectric constant) increases as a function of tree height

Basal Area and height are independent parameters Estimation of height from dbh or basal area results in large errors

Forest Canopy Laser Altimetry

Small footprint scanning LIDAR Single Return

Large Footprint/Waveform Lidar

Lidar (LVIS) Derived Successional State

Lidar-estimated Vegetation Structure Characteristics, La Selva

From: J. Drake, R. Dubayah, D. Clark, R. Knox, J. Blair, M. Hofton, R. Chazdon, J. Weishampel, and S. Prince, Estimation of forest structural characteristics using large footprint lidar, *Remote Sensing of the Environment*, 79, 305-319, 2002.

From: J. Drake, R. Dubayah, D. Clark, R. Knox, J. Blair, M. Hofton, R. Chazdon, J. Weishampel, and S. Prince, Estimation of forest structural characteristics using large footprint lidar, *Remote Sensing of the Environment*, 79, 305-319, 2002.

Estimating Aboveground Biomass at La Selva Using Lidar (LVIS)

From: J. Drake, R. Dubayah, D. Clark, R. Knox, J. Blair, M. Hofton, R. Chazdon, J. Weishampel, and S. Prince, Estimation of forest structural characteristics using large footprint lidar, *Remote Sensing of the Environment*, 79, 305-319, 2002.

Equations relating Waveform Width, Change in Elevation, and Forest Height

	R ²	B ₀	B_1	Bias (m)	Standard Error (m)	Count
Amazon	68%	1.08249	0.22874	-0.48	9.90	19
Pacific NW	64%	0.96599	0.05953	-1.71	12.66	24
Southeast	59%	0.68778	0.14517	0.01	4.85	23
Combined	67%			-0.76	9.61	66
All	48%	0.88896	0.15427	-0.84	12.14	66

Harding et al. 2004

SAR Polarimetry & Interferometry

Radar Observation of Forest Stands Impact of Polarization & Wavelength

P-band (HH,HV,VV) L-band(HH,HV,VV)

C-band (HH,HV,VV)

AIRSAR Polarimetric Data Over Manu National Park, Peru

Fusion of Radar and Lidar Data

Height Maps as a Function of Frequency

S. Hensley, P. Siqueira, E. Rodriguez, T. Michel, 2003

Multi-Baseline Interferometry for Forest Structure

L-band multibaseline (multi-pass) experiment conducted by the DLR, Germany

Reigber, A., Moreira, A., "First Demonstration of Airborne SAR Tomography Using Multibaseline L-Band Data," IEEE Trans. Geosci. Rem. Sens., 38(5), 2000.

Approach:

Develop Three relations for Deciduous, Coniferous, and Mixed Forests:

 $AGLB = f(H_{srtm}, LAI, VCF)$

Fusion of Radar and Lidar Measurements

Modeling Approach

Geostatistical Approach

Science & Measurement Requirements Vegetation Structure and Biomass

Science Objectives	Scientific Measurement	Instrument Functional	Mission Functional Requirements
	requirements	Requirements	
Develop globally consistent and spatially resolved estimates of	Above Ground Live Woody Biomass (greater of $\pm/-10$ tons or 20% of	P-Band Radar(435 Mhz): Polarimetric	DAAC data archiving and distribution.
above-ground forest biomass	total) at 1 ha spatial resolution	Resolution: 100 m	Field validation program.
	(specify accuracy for large areas)	Relative Accuracy: 0.5 dB	Global Forest Above Ground Live
Develop globally consistent and spatially resolved estimates of forest age-state and vegetation	at 25 m resolution and 1–2 m	between 20–30°	Product
structure to understand the traiectory of terrestrial	biomass change from disturbance	Repeat Pass Interferometry	Global Forest Height Integration of data products into
ecosystems and their relationship to carbon cycle.	(greater of $+/-$ 10 tons or 20%) at 1 ha resolution.	3 beam Full Wave	multisource land data assimilation.
		Lidar(1064 nanometer	
Monitor and Quantify changes in terrestrial carbon sources	biomass change from accumulation or degradation at scale of 1 km(?)	Resolution: 20 m Accuracy: 1-5 m	Orbit: 600 km, circular, polar, sun- synchronous,
and sinks resulting from disturbance and recovery.	and precision of 2-4 tons/ha/year		~6 am/pm equator crossing
Improve habitat quality	interannual change of forested area at 1 ha resolution	Minimum three-year mission life.	30–45 day repeat cycle
determination for biodiversity estimates.			3-5 years baseline mission
Enable improved management of forestry and the global carbon cycle			
Develop globally consistent and spatially resolved measures of wetland extent, inundation state and estimate the methane emission			