

LaRC-JPL Active Remote Sensing Concepts for ASCENDS

Edward Browell (LaRC) and Bob Menzies (JPL)

Presenting for All LaRC, JPL, ITT, UNH, and AER Team Members

Carbon Cycle & Ecosystems Workshop Adelphi, Maryland 28-30 April 2008

Outline

- Why active remote sensing of CO₂?
- How make active CO₂ measurements?
 - CO₂ spectroscopy and measurement approach
- Results from recent 1.57-µm airborne LAS validation experiments.
- Complementarity of 1.57- and 2.0-µm LAS measurements.
- Results from 2.0-µm LAS flight tests.
- ASCENDS mission study summary and near-term activities.

ASCENDS Measurement Approach & Why

ASCENDS Measurement Approach

• Laser Absorption Spectrometer (LAS) to provide column integrated measurements of CO₂

• Why active remote sensing of CO₂?

- Control of light source and detectors for precise wavelength control and background discrimination.
- Global CO₂ column measurements.
- Orders of magnitude higher density and coverage than ground networks.
- Measures at all times of day and night.
- Measures over land and water.
- Measures over all latitudes and surfaces on every orbit.
- Illumination path = observation path.
- Small measurement footprint measures to the top of thick clouds and between broken clouds.
- Measurement weighted to lower troposphere for enhanced CO₂ source/sink sensitivity.

Optical Depth (OD) = n_{CO2} [cm⁻³] x σ [cm²] x dz [cm]

LAS CO₂ Measurement is two-way integration of OD from platform to surface.

ASCENDS Measurements

 CO_2 column mixing ratio (XCO₂) measurement with Laser Absorption Spectrometer (LAS) technique requires the simultaneous measurement of the CO_2 column number density (CND); the O_2 column number density to converting the CND to XCO₂; and the path length of the measurement. A temperature profile measurement is also required to constrain the XCO₂ measurement. A column CO measurement over the same XCO₂ path is also recommended for interpreting sources and sinks of CO_2 .

CO₂ column measurement

- CO₂ Laser Absorption Spectrometer to resolve (or weight) the CO₂ altitude distribution, particularly across the mid to lower troposphere.
- 1.6-μm LAS only baseline or integrated 1.6-μm + 2.0-μm LAS option

Surface pressure measurement

- O₂ Laser Absorption Spectrometer to convert CO₂ number density to mixing ratio.
- Surface/cloud top altimeter
 - Laser altimeter to measure CO₂ column length.

Temperature sounder

• Six channel passive radiometer to provide temperature corrections.

CO sensor

Gas Filter Correlation Radiometers (at 2.3 & 4.6 μm) to separate biogenetic fluxes from biomass burning and fossil fuel combustion.

Imager

• To provide cloud clearing for soundings.

Multifunctional Fiber Measurement Architecture

The 1.57-µm LAS architecture

- simultaneously transmits online and offline wavelengths reducing noise from the atmosphere, target and sensor into a common-mode term which is readily removed,
- 2. is independent of the system wavelength, and
- 3. supports N+M redundancy.

The LAS architecture supports the measurement of multiple species (i.e., CO_2 and O_2) and altitude simultaneously.

Advanced CO2 and Climate LAser International Mission (ACCLAIM) (Active Laser System for ASCENDS)

ITT Engineering Development Unit used to validate end-end system performance model; technology readiness for ACCLAIM Mission; and capability for high precision CO₂ measurements.

ACCLAIM Flight Test Campaigns

May 21-25, 2005 Ponca City, Oklahoma (DOE ARM Site) (5 Science Flights: Land, Day & Night,)

June 20-26, 2006 Alpena, Michigan (6 Science Flights: Land & Water, Day & Night)

October 20-24, 2006 Portsmouth, New Hampshire (4 Science Flights: Land (inc. mountains) & Water, Day & Night)

May 20-24, 2007

Newport News, Virginia (8 Science Flights: Land & Water, Day & Night)

October 17-22, 2007

Newport News, Virginia (9 Science Flights: Land & Water, Day & Night, Clear & Cloudy)

CO₂ Test Flight Campaign - October 17-23, 2007

Flight #	Date (2007)	Objectives	Track	Aircraft	TO Time (EDT)	Landing (EDT)	Comments	
1	10/17	Inland, Afternoon	4	Lear	1541	1659	Mostly Clear	
2	10/18	Coast, Mid-Day	1	Lear	1021	1242	Low & Mid Scat. Clds	
				Twin Otter	1000	1305		
3	10/20	Inland, Mid-Day	4	Lear	1100	1320	Mid Clds on N Tk	
4	10/20	Ocean, Afternoon	3	Lear	1550	~1800	Clear	
5	10/21	Inland, Late- Morning	4	Lear	1008	1234	Clear	
6	10/21	Inland, Night	4	Lear	1900	2030	Clear Below 20kft	
				Twin Otter	1825	~2100		
7	10/22	Bay & Coast, Late- Morning	1 & 2	Lear	1005	1208	Mostly Clear	
	10/22		2	Twin Otter	1010	~1230		
8	10/23	Inland, Pre-Dawn	4	Lear	431	645	Clear	
				Twin Otter	441	706		
9	10/23	Ocean, Late- Morning	3	Lear	949	1217	Many Clds	
_				Twin Otter	1010	~1245		

ACCLAIM Off-Line Science Return & Reflectance Variations Along Track 4 on 23 Oct. 2007

Off-Line Signal Variation

Water-Land Transition Between Tracks 2 & 1 on 22 Oct. 2007

CO₂ **OD** Measurement SNR

					Delta					ON/OFF		ON/OFF
DATE	FLIGHT	FILE	Start Hour	End Hour	Time, sec	ALT	OD	OD	OD	Ratio	OD	Ratio
LAND							MEAN-1s*	STDV-1s*	SNR-1s*	SNR-1s*	SNR-10s*	SNR-10s*
101807	2	7	11.505	11.515	36	3306	0.3579	0.0043	232.96	650.83		
102107	5	6	11.560	11.672	403	3126	0.3574	0.0040	252.89	707.60	324.85	908.95
102107	6	5	20.200	20.354	554	3141	0.3567	0.0047	212.79	596.61	272.71	764.61
102207	7	7-L	11.145	11.200	198	3132	0.3536	0.0038	263.06	743.86	395.89	1119.47
102307	8	2	4.880	4.960	288	3153	0.3392	0.0030	336.11	990.93	563.39	1661.01
102307	8	3	5.070	5.170	360	3144	0.3363	0.0034	291.73	867.54	393.05	1168.85
								Ave [SNR]	264.92	759.56	389.98	1124.58
								CO2 [ppm]	1.43	0.50	0.97	0.34
WATER												
102207	7	5-W	10.940	11.020	288	3127	0.3567	0.0076	131.09	367.50	290.54	814.52
								CO2 [ppm]	2.90	1.03	1.31	0.47

In situ CO₂ Spiral Measurements on All Flights

CO2 (ppm)

(See In Situ CO₂ Poster by Vay et al. #292)

ACCLAIM Versus In Situ CO2 Measurements

FLIGHT	FILE	Start Hour	End Hour	Altitude	CO2	Optical De	oths (OD)	& Mixina	Ratios (M	IR)
					OD	MR	OD	MR	OD	MR
					MEASURED	MEASURED	MODELED	MODELED	DIFF	DIFF
					(M)	(M)	(A)	(A)	(%)	(ppm)
1	2	16.213	16.325	4701	0.4955	378.6	0.5005	382.5	-1.01	-3.8
	3	16.383	16.445	4702	0.4934	376.7	0.5008	382.5	-1.49	-5.6
	4	16.585	16.634	4700	0.4909	374.8	0.5010	382.5	-2.00	-7.6
2	3	10.795	10.806	4725	0.5081	385.0	0.5045	382.3	0.70	2.7
	4	10.95	10.97	4715	0.4986	379.8	0.5032	382.3	-0.91	-3.5
	7	11.505	11.515	3306	0.3579	394.3	0.3474	382.4	3.05	11.6
	9	11.988	12.024	1720	0.1813	390.2	0.1778	382.4	1.98	7.5
5*	5	11.31	11.44	5382	0.6127	383.8	0.6142	384.7	-0.25	-0.9
	6	11.56	11.672	3126	0.3574	388.1	0.3560	386.6	0.39	1.5
	7	11.82	12	1526	0.1758	395.7	0.1737	391.2	1.19	4.5
	8	12.07	12.092	1524	0.1771	394.6	0.1755	391.2	0.90	3.4
6 *	4	19.9	20	5398	0.6221	389.1	0.6154	385.0	1.07	4.1
	5	20.2	20.354	3141	0.3567	385.6	0.3579	386.9	-0.35	-1.3
7*	5-W	10.94	11.02	3127	0.3567	385.3	0.3554	383.9	0.37	1.4
	7-L	11.145	11.2	3132	0.3536	383.4	0.3541	383.9	-0.14	-0.5
8	2	4.88	4.96	3153	0.3392	391.6	0.3328	384.0	1.92	7.3
	3	5.07	5.17	3144	0.3363	390.2	0.3310	384.0	1.58	6.0
	4	5.28	5.44	1543	0.1631	393.4	0.1599	385.3	2.03	7.7
	5	5.52	5.67	599	0.0606	<u>384.3</u>	0.0608	<u>386.0</u>	-0.48	-1.8
	6	5.73	5.95	597	0.0605	386.2	0.0605	386.0	-0.01	0.0
	7	6.055	6.15	447	0.0444	379.9	0.0451	386.0	-1.62	-6.2

* Operational mode change, in-flight calibration on Flt 7, Leg 8, and altitudes limited to <5500 m.

Average	384.84	0.33	1.25							
Std Dev	2.62	1.35	5.13							

In situ profiles of CO_2 on each flight were used to determine in situ OD and comparisons with measured CO_2 OD showed high correlation under wide range of surface and background conditions.

Results from ACCLAIM Flight Tests in October 2007

- Obtained EXTENSIVE data set for ACCLAIM instrument performance evaluation and CO₂ column measurement accuracy and precision.
- Flight tests conducted over wide range of surface reflectances, including measurements in presence of scattered clouds, and determined their effective backscatter reflectance at 1.57 micron.
- Obtained high signal-to-noise (SNR >250 or <1.5 ppm CO₂ uncertainty) for CO₂ column measurements with 1-s averaging times over land and 10-s averaging over water.
- Absolute comparisons show ACCLAIM CO₂ optical depths were within ~1.5% (~5 ppm) of the modeled optical depths with very small (<0.3% or <1.25 ppm) average offset calculated from in situ CO₂ profiles.
- October flight tests were coordinated with JPL 2-micron heterodyne laser system on Twin Otter aircraft - results to follow.

- (**IPDA** = Integrated Path Differential Absorption)
- What is gained by having <u>both</u> 1.57 and 2.05 micron capability?
 - Altitude profiling capability in lower and middle troposphere (due to significant difference in 1.6 and 2 micron CO2 absorption band strengths)
 - Enhanced cloud detection and filtering capability
- Topics of presentation:
 - How IPDA soundings in the two CO2 bands can "weight" different altitude zones by tuning the transmitter frequencies appropriately
 - The JPL LAS aircraft instrument operating in the 2-micron CO2 absorption band
 - JPL LAS flights in Virginia (Oct. 2007) and sample of data
 - Aircraft instrument ops. validation of key system performance elements

IPDA Measurement of CO₂: Optimization

- There is an optimum on-line absorption optical depth (OD) for **IPDA**:
 - Absorption OD?? Transmittance through absorbing path = e^(-OD)
 - OD too small: not enough <u>differential absorption</u> loss of sensitivity to the CO2 - can compensate by transmitting more power, increasing receiver telescope aperture size, or both;
 - OD too large: not enough <u>detected signal</u> loss of sensitivity can compensate as state above;
- What is the optimum?
 - Optimum optical depth ~ 1 (on-line/off-line transmittance ratio ~ 0.3)
- How does this affect the tuning of the LAS instrument to "weight" the lower or middle troposphere?
- With the LAS, the laser transmitter frequency can be tuned for strong interaction with lower or middle tropospheric CO2 molecules; however maintaining the "optimum optical depth" constrains the tuning;
- Use of (temperature insensitive) absorption lines with line strengths covering an order of magnitude in dynamic range greatly increases the flexibility

1e+06

CO_2 Bands in 1.575 – 1.625 and 2.0 – 2.08 µm Regions

'CO2 626.hitran' using 1:2 -

'CO2 636.hitran' using 1:2 -'CO2 628.hitran' using 1:2 -

Linestrengths in 2.06 μ m region are 10 times larger than in the 1.6 μ m region

Linestrengths and positions scaled to 1.0e-26

JPL

Simulated spectral transmittance near the 4875.7490 cm⁻¹ line for a **1-km pathlength**

Atmospheric CO₂ Transmittance Near 1.57 μ m

Simulated spectral transmittance near the 6364.9225 cm⁻¹ line for a **1-km pathlength**

JPL Airborne CO₂ Laser Absorption Spectrometer

Status

- Instrument built and tested in a laboratory environment with funding from NASA ESTO Instrument Incubator Program;
- Operates at 2.05 microns, employs heterodyne receiver;
- Initial measurement of differential CO2 concentration at the ~1% agreement demonstrated in the laboratory
- Flights:
 - <u>California:</u> engineering checkout flights were conducted over the Mojave desert and the Pacific Ocean during summer <u>2006</u>.
 - <u>Oklahoma:</u> 3 flights were conducted near the instrumented tower at the DOE Oklahoma ARM site during <u>September 2007</u>.
 - <u>Virginia</u>: 5 flights were conducted in Virginia in <u>October 2007</u> under the joint campaign with the ACLAIM instrument.
- See poster paper (Gary Spiers / Bob Menzies)

CO₂ Flights - October 2007

Flight Tracks

RTM April 2008

- Online and Offline return signal powers are highly correlated along Track 4, as expected when primary fluctuation source is due to surface reflectance variability
- We achieved a differential absorption precision of ~2%. This is consistent with speckle-limited fluctuation amplitudes for the data averaging time (~ 1 s). Faster data transfer electronics will reduce speckle effect for a given data averaging time.

Column CO₂ Retrieved from Flight Data 10/21/2007 Flight Track 4, Night Time

Slope corresponds to a CO₂ concentration of 450 +/- 8 ppmv

In-situ measured CO_2 concentration varied between 392 and 396 ppmv as a function of altitude

- The measurement bias is being investigated through further analysis of the data

Summary

- With LAS soundings of CO2 at 1.57 and 2.05 microns, we can probe the lower and middle troposphere independently, while optimizing the IPDA sensitivity for each channel
- Airborne 2.05 micron LAS instrument status
 - Demonstrated CO2 retrievals with 2% precision over ~ 5 second time increments from multiple flight legs
 - Continuing data analysis
 - Resolving bias
 - Next steps:
 - Incorporate higher-speed data transfer/storage capability for increased throughput can increase precision by factor of 2 for the same time average (same spatial resolution)
- With both 1.57 and 2.05 micron LAS instruments have demonstrated precision levels that validate system performance predictions in varied atmospheric conditions over diverse terrain

Summary of ASCENDS Mission Study

- ASCENDS mission has been defined that can meet the science objectives defined in the NRC decadal survey (DS).
 - CO₂ column mixing ratios over day/night, all latitudes, all seasons with high precision.
 - Global coverage to surface/cloud tops and to surface between broken clouds.
 - Mission data will permit significant improvements in source/sink estimates on regional scales.
- ASCENDS mission approach utilizes mature instrument technologies that could support an LRD as early as 2014.
 - Architecture based on advanced telecom technologies mitigates risk associated with early launch option.
 - Mission design utilizes mature SC and launch capabilities.
- Baseline ASCENDS mission cost within DS estimate uncertainty.
 - Cost for enhanced science options evaluated.
- ASCENDS mission includes all required measurements.
 - Minimizes risk from dependencies on other missions and external data sets. (See ASCENDS Poster by Harrison et al. #66)

ASCENDS Near-Term Activities

Science

- ASCENDS Workshop July 2008
- Continue impact studies of ASCENDS measurements
- Continue LaRC-JPL flights in preparation for OCO validation
- Apply airborne CO₂ LAS systems to regional to continental scale CO₂ investigations
- Active Instrument Development
 - Extend ground-based 1.26-micron O₂ LAS pressure measurements to flight experiments (July 2008)
 - Combine 1.6 & 2.0 CO₂ LAS systems with 1.26 O₂ LAS and laser altimeter for ASCENDS Airborne Flight Simulator on NASA P-3 (available by Dec. 2009)
- Mission Development
 - Begin life tests of laser transmitters
 - Conduct study of passive instrument for T & CO
 - Conduct Independent Cost Estimate of ASCENDS mission
 - Examine potential national/international collaborations