

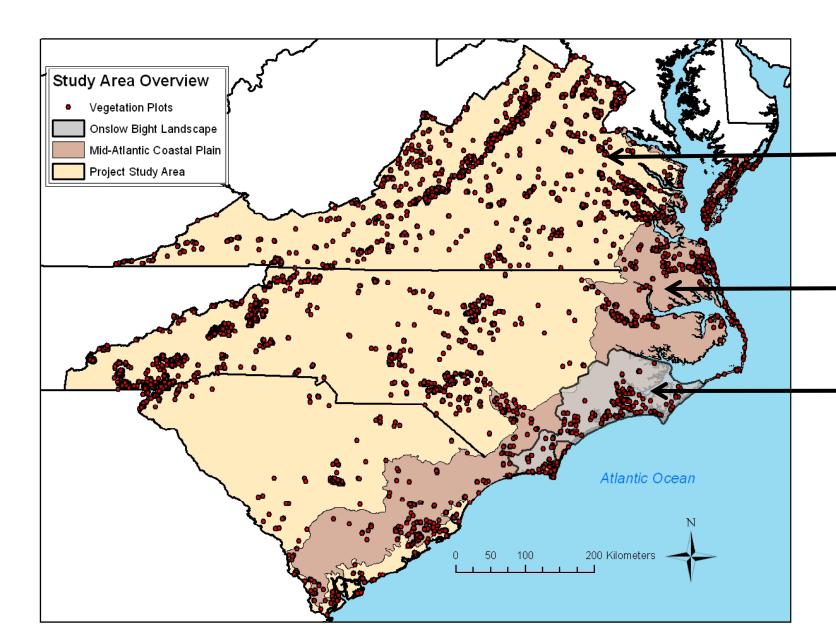
Landscape Heterogeneity and Plant Species **Richness in the Southeastern US** Jennifer Kwasny Costanza¹, R. Todd Jobe, Aaron Moody, Robert K. Peet UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Overview

- Several studies suggest that habitat heterogeneity plays an important role in determining patterns of species richness at regional to continental extents (Kerr and Packer 2001, Rahbek and Graves 2001).
- We examined the heterogeneity-plant species richness relationship for vegetation plots across three geographic extents in Virginia, North and South Carolina using the variation of MODIS NDVI values.
- We found an overall decrease in total, native, and exotic plant species richness with increasing heterogeneity at all three extents.
- This relationship becomes more negative as the grain size at which heterogeneity is measured increases.

Questions

How does heterogeneity of NDVI affect plant species richness in the Southeast US?


In particular, how does the richness-heterogeneity relationship vary with:

- Native, exotic, and total plant species richness?
- Geographic extent of sampling?
- Grain size at which heterogeneity is measured?

Methods

Study Area: Geographic Extent

We analyzed the richness-heterogeneity relationship at three spatial extents

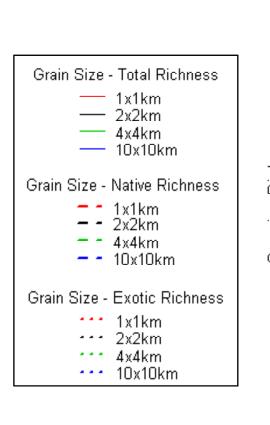
- . Across NC, SC, and VA
- 2. In the Coastal Plain
- 3. In the Onslow Bight

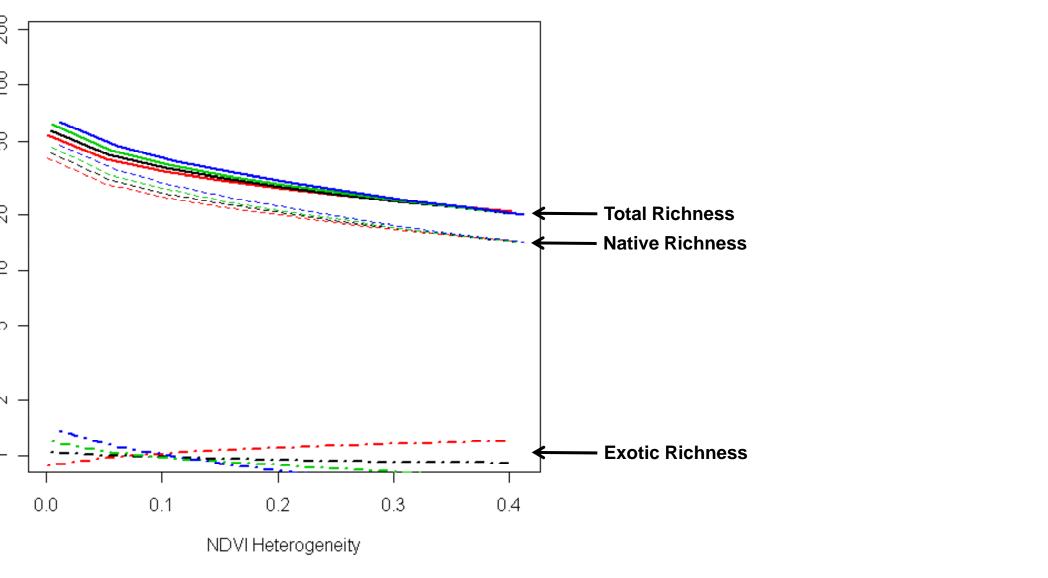
Plant Species Richness Data

We used data from 7000 vegetation plots in the Carolina Vegetation Survey (CVS) and Virginia Natural Heritage (VNH) databases. CVS and VNH plots are detailed, georeferenced records of species richness collected over the past 20 years.

Conservation Landscape

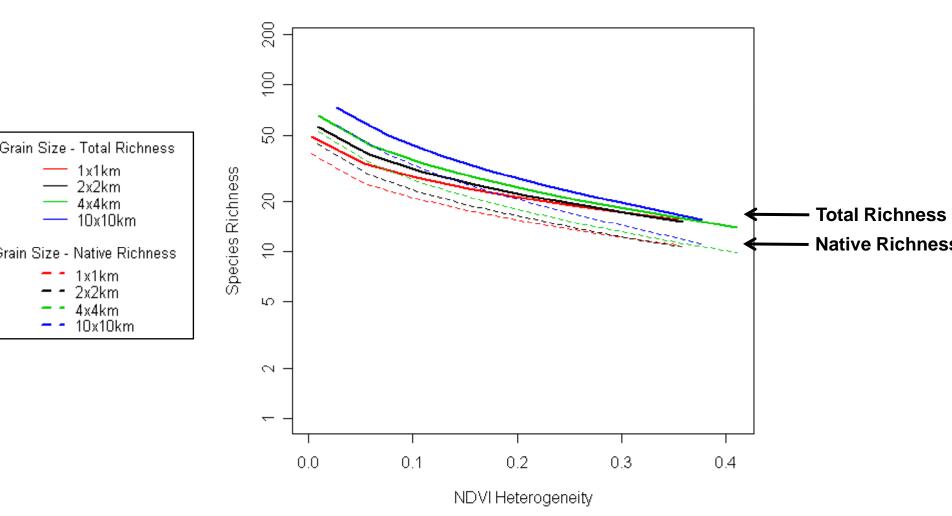
Heterogeneity Grain Size


We measured heterogeneity as the standard deviation of MODIS NDVI values from a day in the growing season, 2006. This analysis was conducted at four window sizes surrounding each plot location.

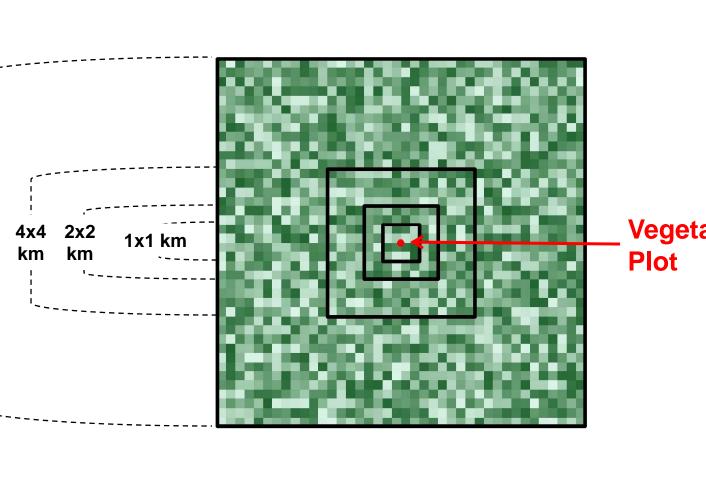

We modeled the relationship between heterogeneity and plant species richness using a Poisson regression with logtransformed richness.

Across the Three-State Area

For Total, Native, and Exotic Richness:



Model Summaries


Total Richness				Native Richness				Exotic Richness						
Grain Size	n	Deviance	AIC	р	Grain Size	n	Deviance	AIC	р	Grain Size	n	Deviance	AIC	р
1x1km	6927	104109	140840	< 0.001	1x1km	6927	72694	107420	< 0.001	1x1km	6927	19710	26003	< 0.001
2x2km	7065	103978	141351	< 0.001	2x2km	7065	72418	107740	< 0.001	2x2km	7065	20547	27002	0.05
4x4km	7087	102598	140087	< 0.001	4x4km	7087	71381	106812	< 0.001	4x4km	7087	20601	27096	< 0.001
10x10km	7097	101056	138591	< 0.001	10x10km	7097	70291	105764	< 0.001	10x10km	7097	20485	26984	< 0.001

Across the three-state area, the slope of the heterogeneity-richness relationship becomes more negative with increasing grain size, for total, native, and exotic species richness. The slope of each line is significantly different from every other slope.

In the Middle Atlantic Coastal Plain For Total and Native Richness: Heterogeneity has an increasingly negative effect as grain size increases

		2
		100
Grain Size - Total Richness		
		50
4x4km 10x10km	ess	
Grain Size - Native Richness	tichn	20
1x1km 2x2km 4x4km	Species Richness	10
- - 10x10km	g	ю
		4)

Heterogeneity has an increasingly negative effect as grain size increases

Model Summaries

Grain Size	n	Deviance	AIC	р
1x1km	1598	25172	33117	< 0.001
2x2km	1667	24553	32798	< 0.002
4x4km	1675	23869	32153	< 0.002
10,10,00	4005	00040	20045	. 0.00
10x10km	1685	22316	30645	< 0.00
Native Richn Grain Size		Deviance	30645 AIC	< 0.00 ⁻
Native Richn	ess			
Native Richn Grain Size	<u>ess</u> n	Deviance	AIC	р
Native Richn Grain Size 1x1km	n <u>n</u> 1598	Deviance 18373	AIC 25885	p < 0.00

Exotic Richness

For exotic richness in the Middle Atlantic Coastal Plain, the parameters of the model were not significant at most heterogeneity grain sizes, and are thus not presented here.

Model Summaries

Total	Richness

Total Richness					Native Richness					
Grain Size	n	Deviance	AIC	р	Grain Size	n	Deviance	AIC	р	
1x1km	283	5038.4	6569	< 0.001	1x1km	283	3888.3	5346	< 0.001	
2x2km	286	5081.1	6628	< 0.001	2x2km	286	3881.7	5354	< 0.001	
4x4km	286	5078.5	6625	< 0.001	4x4km	286	3856.0	5328	< 0.001	
10x10km	286	4761.9	6308	< 0.001	10x10km	286	3589.6	5061	< 0.001	

For grain sizes across most groups of species and geographic extents, heterogeneity has a negative effect on plant species richness.

Heterogeneity at large window sizes may capture between-habitat variation, thus leading to more of a decrease in richness.

Conclusions & Further Work

Linear regressions indicate that heterogeneity has a negative effect on total, native, and exotic species richness.

The relationship becomes more negative at larger grain sizes of This pattern is similar for all spatial extents we heterogeneity. examined.

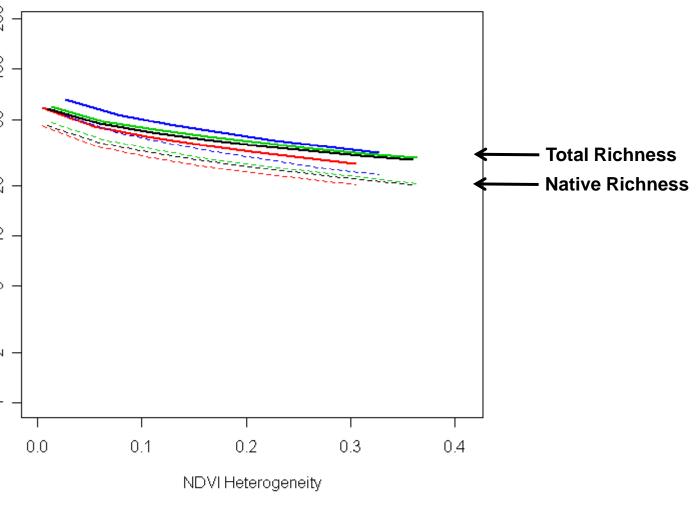
Further work is planned to refine the measure of heterogeneity:

- measures of heterogeneity.

Kerr, J.T., and Packer, L. 1997. Nature 385:252-254. Rahbek, C., and Graves, G.R. 2001. PNAS 98:4534-4539.

Acknowledgments

This research was funded by a grant from NASA to Drs. Aaron Moody and Robert Peet at UNC-Chapel Hill. Forbes Boyle, Jeff Ott, and the Carolina Vegetation Survey provided vegetation plot data and plant taxonomic information.


¹Please contact costanza@unc.edu with questions or for more information.

In the Onslow Bight Landscape

Heterogeneity of growing season NDVI and elevation are related to species richness at most grain sizes.

Exotic Richness For exotic richness in the Onslow Bight, the parameters of the mode vere not significant at most terogeneity grain sizes, and are nus not presented here

. Calculate heterogeneity at grain sizes smaller than 1x1km, using measures derived from Landsat TM data.

2. Calculate heterogeneity across habitat patches where vegetation plots occur, rather than across square windows.

3. Use landcover, soils, and elevation data to derive multivariate

References