What is Synchronous/Lock-and why use it?

In detection

11.9

X - UPF 0

X + UPF - +

Engineering Development Unit and Validation History

Innovative Low Cost Low Risk Patented Lidar for CO2, O2, Topography n of all wavelengths eliminates significant source of error from fast changes in erts most noise to common mode. Use of one receiver chain (for CO2 and O2) ths eliminates bias and drift which arise with separate optical paths, detectors, Simultaneous tr pointing requireme on/off ation to separate

nal is amplitude modulated at a that is high relative to the highe encies to be imposed upon it by arget interaction, and is far

ITT Engineering Development Unit has flown 7 campaigns starting in 2005 and is scheduled for 1 to 2 per year until 2012.

The authors would like to thank the leadership at NASA LaRC and the Innovative Partnership Program for much needed support of the airborne validation program, AER Inc. for devoting significant internal R&D funds to support this effort and the leadership at ITT Space Systems for their substantial and continued support of this activity.

"Multi-Frequency CW Fiber Laser-Lidar Suite for the ASCENDS Mission" Michael Dobbs¹, Jeremy Dobler¹, Jay Overbeck¹, Berrien Moore III², Edward Browell³, Wallace Harrison³, T.S. Zaccheo⁴, and H.E. Snell⁴ "ITT Corporation, Fort Wayne, Indiana 48801, USA, Mike Dobbs @lit.com ²University of New Hampshire, Durham, New Hampshire 03824, USA, BMore@unh.edu ³NASA Langley Research, Iro., Lexington, Massachusetts 02421, USA, Szaccheo@aer.com

The Carbon Cycle has unresolved and unidentified sinks which are critical to understanding when an equilibrium will be reached, and the resultant impact on modern society.

Where are the sinks? Are they stable? What happens when they shut down? As the Southern Antarctic ocean has this year! Can we create sinks? Do we need to extract and bury CO2 from the Atmosphere?

Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond Earth Science: Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future, National Research Council

Scientific Discovery and Societal Applications

Understanding the complex, changing planet on which we live, how it supports life, and how human activities affect its ability to do so in the future is one of the greatest intellectual challenges facing humanity. It is also one of the most important challenges for society as it seeks to achieve prosperity, health, and sustainability.

As nations seek to develop strategies to manage their carbon emissions and sequestration, the capacity to quantity the present-day regional carbon sources/sinks and to understand the underlying mechanisms central to prediction of future levels of CO2, and thereby, informed policy decisions, sequestration monitoring, and carbon trading.... A laser-based CO2 mission is the next logical step after the launch of OCO, and it will directly benefit from OCO infrastructure ... and hence this mission needs to be launched in the 2013 timeframe at the latest." Quantify global spatial distribution of atmospheric CO2 on scales of weather models. Quantify spatial distribution of terrestrial and oceanic sources/sinks on a1-deg grid at weekly resolution."

Meeting the NRC's Requirements for CO2 Sources and Sinks Requires a Comprehensive Instrument Suite

Physics-based, high-fidelity model of the instrument is an essential tool for performing trade studies and error analysis. Combining the model with measurements from the Engineering Development Unit, allows for significant risk reduction...

2007 Flight Data and Modeled Data based on in-situ measurements

Instrument tracks Model and is within uncertainty of in-situ based model

The solid test line is the measured second averaged differential OD the solid green lines represent nominal computed differential OD or two atmospheric states the solid gran line is the modeled DD corrected for aerosol ackscatter

lustrate min and max difference ased on perturbation calculations.

		Space
Effective Receiver Area (m2)	0.2	2
Average Transmitted Power (Watts)	5	25
Optical Efficiency (%)	12	40
Detector Temperature	77K	60K

he ASCENDS CO2 LAS system has proven itself robust to rapid changes in reflectivity.

Mission Risk Assessment – adapted from the 'Requirements Definitions for Future DIAL Instruments' report by DLF (Deutsches Zentrum für Luft- und Raumfahrt e.V.)

	Risk Level							
Parameter	2um Random Modulated IPDA	1.6um Pulsed Direct Detection IPDA	1.5um Narrow Band Lock-in IPDA				Risk Level	
Random Error	Low-moderate	Low-moderate	Low-moderate		Trade-off Criteria	2um Random	1.6um Pulsed Direct	1.5um Narrow Band
Systematic Error	Moderate-high	Moderate-high	Low-medium			Modulated IPDA	Detection IPDA	Lock-in IPDA
budget			Includes lidar channel at 1.27 for pressure		Performance Analysis	Compliant with	Compliant with target	Compliant with target
Power-Aperture- Area Product	Medium	Low	Medium-high Is higher than others as it is not range-gated, however, the low cost of 'cots' EDFA & light- bucket, keeps overall cost low.		Technical Aspects Transmitter Rx Optics & Detector Wavelength Control Opto-Mech-Thermal Calibration	Medium-high Medium	Medium-high High Medium Low-medium Medium-high	Low Low Medium Low Medium
Laser Spectral Performance	High	Moderate	Moderate Demonstrated retrievals with DFB widths and stability.			Medium Medium Medium		
Path Length	Low	Moderate	Low		On-board Signal Processing	Low-medium	LOW	LOW
Determination			Includes PN ranging channel		Total Resource Demands	Medium	High	Low
Aerosol/cloud Interference	Low	Moderate	Low Includes pressure channel and laser ranger		\$, Risk, Schedule Mass, Power			
Pointing Requirement	Moderate	Moderate	Low-moderate On/Off are simultaneous					
Example of Error Budgets for the ASCENDS Mission								

Based on the results of over thirty flights and five years of ground testing, we are confident that the architecture is robust, the technology mature, and that the instrument performance model has been validated. Therefore, we have high confidence that the mission studies performed to date are accurate and confirm that the ITT suite meets the NRC's requirements for the space based mission.