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OverviewOverview

Following data sources were used: 
Pathfinder AVHRR Land (PAL) NDVI 10-Day composites at 8 km from 
ftp://disc1.gsfc.nasa.gov/data/avhrr/global_8km
GIMMS NDVI 15-Day composites at 8 km from ftp://disc1.gsfc.nasa.gov/data/avhrr/global_8km/
MODIS LC Type Global 1km 2001 MOD12Q1 V004 LC Product from 
http://edcdaac.usgs.gov/modis/mod12q1.asp
MODIS Nadir Reflectance BRDF-Adjusted 16-Day L3 0.05Deg CMG(2001-2006) from 
http://edcdaac.usgs.gov/modis/mod43c4v4.asp and  http://www-modis.bu.edu/brdf_albedo/nbar.html

Our questions: 

(1) Can we see the significant changes in land cover and land use following the collapse 
of the Soviet Union using satellite data? 
(2) Can we use satellite data to generate new products that enable monitoring of key 
surface water quality variables? 
First, we analyzed land surface phenology within specific land cover categories using 
the nonparametric seasonal Mann-Kendall trend test adjusted for autocorrelation to 
NDVI  image series from AVHRR (PAL and GIMMS) for the Soviet (1982-1988) and post-
Soviet (1995-2000) epochs and from MODIS (MOD43C NBAR) for the recovery (2001-
2006) epoch. This analysis identified the spatial location and extent of temporal trends 
and assessed their direction and statistical significance. About 90% of croplands and 
forested land in Dnieper Basin showed no significant trends during the Soviet epoch. 
There was little [much] area in significant negative trends during the [post-]Soviet 
epoch. During the recovery epoch, forested lands in the Don Basin exhibited fewer 
significant positive trends than in the Dnieper Basin.
Second, we (a) calibrated and validated the three-band model as well as its special case, 
the two-band model, using datasets collected over a considerable range of optical 
properties, trophic status, and geographical locations in turbid, productive lakes and 
reservoirs; (b) evaluated the extent to which the two-band model could be applied to the 
MODIS and three-band model could be applied to the MERIS to estimate chla in turbid, 
productive waters, and (c) estimated uncertainties of chlorophyll-a retrieval from MODIS 
and MERIS data taken over Ukrainian and Russian test sites.

Data Processing Steps:
17 IGBP land cover classes from MOD12Q1 V004 were 
aggregated to 8 super-classes. 
Each super-class was masked separately for each river 
basin and rescaled to 8 km using a majority filter.
Analyses were restricted to the Forests, Shrublands, and 
Croplands super-classes.   
Analyses were restricted to the composite periods from 
April to October in each year.
Three epochs were analyzed: Soviet (1982-1988), post-
Soviet (1995-2000), and recovery (2001-2006)  
Satellite data from NOAA-11 were excluded due to sensor 
artifacts (de Beurs & Henebry 2004b).
Trends were assessed using the non-parametric Seasonal 
Mann-Kendall test adjusted for autocorrelation (de Beurs 
& Henebry 2004b; 2005).
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1. Changes in Land Use Intensity Within the Don 1. Changes in Land Use Intensity Within the Don 
and Dnieper River Basinsand Dnieper River Basins

Data Sources, Data Processing and MethodologyData Sources, Data Processing and Methodology

Methodology:
Seasonal Mann-Kendall (SMK) nonparametric trend test corrected for first-order temporal 
autocorrelation (de Beurs & Henebry 2004b, 2005)
Data were analyzed using a version of the SMK test in IDL by Dr. K. M. de Beurs and P. de Beurs. The 
resulting test results were reclassified in to 6 categories based on confidence intervals, directions, and 
amplitude of phenological shifts to delineate the extents of changed LSP (see legend below). 

Positive change 
of trend 

Negative change  
of trend Intensity Absence of trend 

change 

LSP Trend Change Intensity and Direction

Post-Soviet  vs. Recovery Epochs

Soviet  vs. Recovery Epochs

Dnieper
Basin

Don
Basin

Dnieper
Basin

Don
Basin

Dnieper
Basin

Don
Basin

Soviet  vs. Post-Soviet Epochs

The trend change intensity and direction maps show a 
predominant pattern of negative trends across both 
basins in the transition between Soviet and post-Soviet 
epochs. 

However, the results from PAL data exhibit fewer 
changes in trend direction and the prevalence of 
negative trends is not as obvious as in GIMMS data. 

Both datasets showed agreement in capturing the area 
of persistent negative changes that stretches from the 
mid-basin of the Dnieper to the Siverskiy Donets River (a 
tributary of the Don). 

This area covers the most of Ukrainian croplands where 
agricultural practices changed dramatically during the 
post-Soviet epoch. 

Change in forest trends from positive to negative may be 
due to increased rates of disturbances, especially 
wildfire (Ostapchuk, 2005). 

Soviet vs. POST-Soviet Epochs
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     POST Soviet ► 
Soviet▼ 

% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
POST Soviet 

% Significant 
Negative Trend 0.0 2.8 0.8 3.6 
% Insignificant 
Trends 0.0 61.3 34.0 95.2 
% Significant 
Positive Trend 0.0 0.5 0.6 1.1 
sum  
Soviet 0.0 64.6 35.4 100.0 

 
     POST Soviet ► 

Soviet▼ 
% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
POST Soviet 

% Significant 
Negative Trend 0.0 13.5 1.4 14.9 
% Insignificant 
Trends 0.0 75.6 9.3 84.9 
% Significant 
Positive Trend 0.0 0.2 0.1 0.2 
sum  
Soviet 0.0 89.2 10.8 100.0 

 
     POST Soviet ► 

Soviet▼ 
% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
POST Soviet 

% Significant 
Negative Trend 0.0 3.4 2.7 6.0 
% Insignificant 
Trends 0.0 58.4 34.9 93.3 
% Significant 
Positive Trend 0.0 0.0 0.7 0.7 
sum  
Soviet 0.0 61.7 38.3 100.0 

 
     POST Soviet ► 

Soviet▼ 
% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
POST Soviet 

% Significant 
Negative Trend 0.0 12.4 1.5 13.9 
% Insignificant 
Trends 0.0 79.2 6.8 86.1 
% Significant 
Positive Trend 0.0 0.1 0.0 0.1 
sum  
Soviet 0.0 91.7 8.3 100.0 

 

          Recovery ► 
      POST Soviet▼ 

% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
Recovery 

% Significant 
Negative Trend 0.2 6.0 0.1 6.2 
% Insignificant 
Trends 3.4 89.0 1.1 93.4 
% Significant 
Positive Trend 0.1 0.3 0.0 0.3 
sum  
POST Soviet 3.6 95.2 1.1 100.0 

 
          Recovery ► 
      POST Soviet▼ 

% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
Recovery 

% Significant 
Negative Trend 0.2 0.6 0.0 0.7 
% Insignificant 
Trends 14.2 82.4 0.2 96.8 
% Significant 
Positive Trend 0.5 2.0 0.0 2.5 
sum  
POST Soviet 14.9 84.9 0.2 100.0 

 
          Recovery ► 
      POST Soviet▼ 

% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
Recovery 

% Significant 
Negative Trend 0.0 2.0 0.0 2.0 
% Insignificant 
Trends 5.4 85.2 0.7 91.3 
% Significant 
Positive Trend 0.7 6.0 0.0 6.7 
sum  
POST Soviet 6.0 93.3 0.7 100.0 

 
          Recovery ► 
      POST Soviet▼ 

% Significant 
Negative Trends 

% Insignificant 
Trends 

% Significant 
Positive Trends  

sum  
Recovery 

% Significant 
Negative Trend 0.0 0.0 0.0 0.0 
% Insignificant 
Trends 11.1 68.1 0.1 79.3 
% Significant 
Positive Trend 2.8 17.9 0.0 20.7 
sum  
POST Soviet 13.9 86.1 0.1 100.0 

 

POST-Soviet  vs. Recovery Epochs
Comparison of Trends between Basins
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Key Findings from the Change Analysis:
Roughly 90% of croplands and forested land in Dnieper Basin showed no significant trends during Soviet epoch;
Don Basin exhibited more significant positive trends than Dnieper Basin during Soviet epoch;
Recovery epoch shows minimal presence of significant trends of trends in croplands;
Substantial disagreement on extent of significant positive trends in Don croplands (35.4% for GIMMS vs. 7.6% for PAL);
Disagreement on extent of significant positive trends in Don forests during Soviet epoch (38.4% for GIMMS vs. 26.8% for PAL);
Little area in significant negative trends during Soviet epoch;
Substantial area with significant negative trends during post-Soviet epoch; 
Disagreement on extent of significant negative trends in Don forests during post-Soviet epoch (6% for GIMMS vs. 24.2% for PAL); and
Forest in Don Basin exhibited less significant positive trends than Dnieper Basin during the recovery epoch.

2. Surface Water Quality Assessment In the Don and 2. Surface Water Quality Assessment In the Don and 
Dnieper River BasinsDnieper River Basins

The accuracy of chla prediction in four independent datasets was assessed without re-parameterization after initial calibration 
elsewhere. The validation data set contained widely variable chla (1.2 to 236 mg m-3), Secchi disk depth (0.18 to 4.1 m), and 
turbidity (1.3 to 78 NTU). Chl-a predicted by the three-band algorithm was strongly correlated with observed chla (r2 >0.96) with 
average bias across data sets of -4.9% to 11%. Chl-a predicted by the two-band algorithm was also closely correlated with 
observed chla (r2 > 0.92); however, average bias across the data sets was 18% to 50.3% (Gitelson et al., 2008). 

SemiSemi--analytical threeanalytical three--band model for chlorophyllband model for chlorophyll--aa estimation in turbid watersestimation in turbid waters
Chl-a = [R-1(λ1) - R-1(λ2)]×R(λ3)

and its special case, two-band model

Chl-a = R-1(λ1)×R(λ3)
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The optimal bands are determined by performing the calibration for a continuous range from 400-800 nm, isolating one band at a 
time, and choosing each of the 3 bands according to a minimal root mean squire error (RMSE) on the calibration dataset.

The model was calibrated and validated by means of close range sensing in a wide range of optical properties of turbid water 
bodies in US: Iowa, Nebraska, Minnesota, Chesapeake Bay (Dall’Olmo and Gitelson, 2005; Gitelson et al., 2007). 
The 2-band model was calibrated and validated using MODIS spectral bands: λ1 = 662-672 nm and λ3 = 743-
753 nm. The three-band model was tested using MERIS spectral bands: 660-670 nm, 703.75-713.75 nm, and 
750-757.5 nm (Gitelson et al., 2008).

CalibrationCalibration

y = 0.0068x + 0.1439
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Chlpred = 0.9471Chlmeas + 2.1766
R2 = 0.9615

Chlpred = Chlmeas
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Modis Data, Dnieper-Bug Estuary
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Chlorophyll fluorescence retrieval - MERIS

R753/R667 Model – MODIS bands 

Ancillary data: Southern Scientific Centre of the 
Russian Academy of Sciences and  Southern 
Federal University, Rostov-on-Don, Russia

Chlorophyll fluorescence has been measured Chlorophyll fluorescence has been measured 
continuously during the day at transect shown in the continuously during the day at transect shown in the 
map. map. The fluorometer readings were compared with 
different chlorophyll models using MERIS data 
obtained at day of fluorescence measurement. 
Scaled fluorometer readings and model estimates 
(Yi-Ymin)/(Ymax-Ymin) are shown below.

Transect of fluorescence measurementsTransect of fluorescence measurements

33--band Modelband Model 22--band Model band Model –– MERIS bandsMERIS bands

Russia: Azov Sea Russia: Azov Sea -- 20062006 Water samples were taken (29 June and 1 July, 2006) at stations Water samples were taken (29 June and 1 July, 2006) at stations 
shown in the map and phytoplankton biomass was determined. shown in the map and phytoplankton biomass was determined. 
NIR/Red model was used for biomass retrieval from six MODIS 
images (29 June through 3 July). These MODIS estimates were 
compared with measured phytoplankton biomass.  

Ancillary data: Southern Scientific Centre of the 
Russian Academy of Sciences, Rostov-on-Don and 
Southern Federal University, Rostov-on-Don, Russia

Azov Sea 2006 
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Key Findings from the Surface Water Quality Assessment
Both 2- and 3-band models do not require site-specific parameterization to accurately estimate chl-a in waters 

with widely varying bio-optical characteristics. 
Provided that an atmospheric correction scheme for the red and NIR bands is available, the extensive database 

of MODIS and MERIS imagery could be used for quantitative monitoring of chlorophyll-a in turbid waters.  
There are a few caveats that need to be considered when attempting to apply these models to satellite data:

- The strong absorption by water in the NIR greatly reduces the magnitude of the recorded signal. 
- NIR reflectance is a multiplicative factor in the models, which makes its magnitude very critical for accurate chl-
a retrievals.
- Non-uniform residual effects of atmospheric correction across multi-temporal images produce vertical offsets 
among spectra from multi-date images; this affects the accuracy of chl-a retrieval.
- The lower magnitudes of reflectance there is increased susceptibility to the effect of spurious signals from 
neighboring land or cloud pixels.
This heightens the necessity for a highly accurate atmospheric correction procedure that 
yields reliable surface reflectances.
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