

The impact of selective logging on carbon storage and fluxes over Brazilian Amazon

Maoyi Huang¹ (mhuang3@buffalo.edu), Greg Asner², and Michael Keller³ ¹ Department of Civil, Structural, and Environmental Engineering, University at Buffalo, The State University of New York, NY 14260 ²Department of Global Ecology, Carnegie Institution of Washington, Stanford, CA 94305 ³National Ecological Observatory Network, NEON, Inc., 3223 Arapahoe Ave., Suite 210, Boulder, CO 80303

Acknowledgment: This study was funded by NASA TEP/LBA grant NNG06GE32A to G. Asner and M. Bustamante. Part of this work was done while M. Huang was at Carnegie Institution.

. Motivation and background

Monitoring selective logging from space

Tropical forests have been threatened by increasing rates of forest degradation during the past three decades. Although deforestation, largely for the conversion of land to food crops or pastures, is the major destructive force in tropical forests worldwide (Houghton et al., 2000), other forest disturbances such as the selective harvest of timber have also increased in frequency and extent (Nepstad, et al., 1999). In selective logging, a limited number of marketable tree species are cut, and logs are transported off site to sawmills. Unlike deforestation, which is readily observed from satellites, selective logging in the Brazilian Amazon causes a spatially diffuse thinning of large trees, which is hard to monitor using satellite observations. Selective logging causes widespread collateral damage to remaining trees, sub-canopy vegetation, and soils, with impacts on hydrological processes, soil erosion, fire, carbon storage, and plant and animal species.

Recent remote sensing studies have made the monitoring of selective logging possible from the space. Asner et al. (2005a, 2005b) developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging and applied it to the top five timberproducing states of the Brazilian Amazon. Their results show that logging rates ranged from 12,075 to 19,823 km² per year (±14%) between 1999 and 2002 in these states, equivalent to 60-123% of previously reported deforestation (forest clear-cut) area for those years. CASA-3D: an ecosystem model for tropical forest disturbance and selective logging

To understand the impact of selective logging on the regional carbon budget, an ecosystem modeling approach is desired. Unfortunately, current ecosystem models either operate at a broad spatial scale incompatible with diffuse forest disturbances such as selective logging, or at a very fine spatial scale that cannot easily ingest high-resolution data on forest canopy damage and disturbance over large geographic regions. The Ecosystem Demography (ED) model is an exception in that it is an individual-based terrestrial biosphere model which can be scaled to large areas (Moorcroft et al., 2001). However, it lacks an ability to simulate the carbon budget following disturbance such as selective logging. In the case of selective logging, an appropriate modeling approach is needed to simulate timber harvest impacts over large regions, meanwhile properly accounting for a necessary lack of site-specific information that is not expressed in remote sensing data (e.g., changes in forest community composition, light conditions, and stand structure after disturbance)

To address these issues, Huang et al. (2008) developed a new version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) designed specifically to quantify changes in carbon storage and fluxes following forest disturbance in humid tropical forests. The major new features of CASA-3D include: (1) an alternative way of estimating absorbed photosyntheticallyactive radiation (APAR) by taking advantage of new high-resolution satellite maps of forest canopy gap fraction (Asner et al. 2005b); (2) a pulse disturbance module to realistically modify carbon pools after forest disturbance; (3) a regrowth module that addresses changes in community composition following disturbance with a new set of parameterizations based on field observations of gap-phase regeneration; and (4) a radiative transfer module for charactering the dynamic three-dimensional light environment above the canopy and within gaps after disturbance. The model was calibrated with and tested against field observations from experimental logging plots in the Large-scale Biosphere Atmosphere Experiment in Amazonia (LBA) project, and the sensitivity of key model parameters were evaluated with Monte Carlo simulations.

In this study, CASA-3D was applied to the states of Para and Mato Grosso in Brazilian Amazon to assess the pre- and postlogging carbon storage and fluxes over the region.

2. Data and methodology

Meteorological data: the South America Meteorological Data Set from 2000 to 2004 at a 40×40 km² resolution, developed by the Center for Weather Forecasts and Climate Studies (CPTEC) of the National Institute for Space Research (INPE), Brazil. Mean annual cycles of temperature, precipitation, and solar radiation over these five years were used. Soil texture map: NASA Ames Research Center Amazon Ecology (AME) Mapping Data Sets (Potter et al., 1998) at an 8×8 km² resolution

Logging images: the gap fraction images from 1999 to 2002 over Para and Mato Grosso (Asner et al. 2005b) at a 28.5*28.5 resolution

A statistical modeling approach:

Applying an ecosystem model to a region as large as Amazon at a spatial resolution of 28.5*28.5 m² is not trivial, even with the computational capacity of a cluster. Therefore, in this study, we adapted a statistical approach to realize the simulations.

> Spin-up

we resized the meteorological data into a 8×8 km² grid. For each of the 8×8 km² cells, we assumed that the prelogging gap fraction (range from 0-1.0) of the 28.5*28.5 m² pixels within it would take one of the following values on its histogram: 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.6, 0.7, 0.8, 0.9, 1.0. CASA-3D was then initialized with each of the 24 values of gap fraction by repeatedly feeding the mean monthly meteorological data into the model for 500 years, to generate a steady state for all carbon pools. The 24 sets of spin-up carbon pools were mapped back to the 28.5*28.5 m² resolution based on the gap fraction map in 1999 (i.e., the year before all the logging events occurred) to generate a carbon storage map over Para and Mato Grosso.

> Simulations

15 damage levels were assumed: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0, where damage level is defined as the change in gap fraction before and after logging. Asner et al. (2005a) showed that the average gap fraction of pre-logging forests in Amazon is around 0.07. Therefore, we carried out the postlogging simulations by assuming the pre-logging gap fraction to be 0, 0.05, 0.10, respectively. For each of these assumed pre-logging gap fraction values, CASA-3D was applied to simulate dynamic regrowth of the forest in 100 years following selective logging with different assumed damage levels at an 8×8 km² resolution. These results were mapped back to the 28.5*28.5 m² resolution based on the gap fraction images and damage images in Asner et al (2005b) to generate maps of forest recovery over the logged regions.

Figure 4. Change of (a) AGB, (b) NPP, (c) RESP, and (d) NEP over Para and Mato Grosso in pixels with different logging intensities. Damage levels 1-10 correspond to gap fraction change of 0.05 (no logging), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively.

						N P	ليدين (<u>لمر</u> يد	Biomass Loss (Mg
before	logging o	ver Mato	Grosso a	nd Para*		Â	÷	
Mato G	Frosso and H	Para(n=3101	9)			T	have -	6-1
Iean	1	Max	Std					10 - 1
5.1		8.5	2.5				- /	15 - 1 19 - 2
16.4 5.1	19	93.3	56.42					24 - 2
5.1 19.9	2	8. <i>3</i> 41.9	2.3 9.7					29 - 3
20.9	4	52.8	10.8				λ -	35 - 3
km ² map	tural slow and	l passive pools	(see Parton et	al 1989)		≈ ⊼{:		44-4
arse fracti	ions as describ	bed by Huang e	et al. (2008)	ui. 1909).		王 帝 王 臣		48 - 5
g on re	gional ca	rbon budg	get (<mark>aggre</mark>	gated*)				56 - 6
oetweer	n pre-loggi	ng and pos	st-logging v	alues**				64 - 7 79 - 10
5yr	10yr	20yr	30yr	40yr			Le	
8.86	-7.14	-3.12	-1.75	0.01		0 1) 250	500 1,000 Kilometers
2.81	0.22	-2.09	-2.93	-2.71		Figure 1	. Spatia	al distribution of (1) tota
84.79	-265.99	-231.54	-197.20			debris d	ue to lo	ogging in years 2000-200
20.55	59.61	-1.47	-21.83					N promotion
6.87	32.18	21.53	9.94					
logged in	Asner et al. 2 rease (loss) r	2005b, total log	gged area: 532	25 km ²				
ng on i	regional c	arbon bu	dget (ave	raged*)				
5yr	After l 10yr	ogging 20yr	30yr	40yr				
).38	9.71	10.48	10.74	11.07				
5.43) 5.73	(5.61)	(6.05)	(6.20)	(6.39)				
5.66)	(6.39)	(6.16)	(6.07)	(6.08)				
30.81	134.38	140.94	147.46					
6.50	(80.74) 44.92	(03.49) 33.31	29.44					
6.66)	(28.23)	(20.55)	(18.12)					
9.38 4.23)	40.39 (24.69)	38.37 (23.56)	36.37 (22.23)					
ogged in A	Asner et al. 20	05b, n=10114				Figure 2	2 Spatia	l distribution of the reco
of AGB, dam	age level 2	2	Change of NP	P, damage level 1	Char	nge of NPP, damage lev	rel 2	
		C/ha/yr) L	5		C/ha/yr)		1	
		б 1 Щ	0		0 6W) d 5			
0 40 50 60	70 80 90	Å	0 10 20 30 40	50 60 70 80 90		30 40 50 60 70 8		
ears after logo of AGB, dama	ging age level 4	2	Years a Change of NP	fter logging P, damage level 3	Char	Years after logging age of NPP, damage lev	rel 4	$\blacksquare \clubsuit \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
		()/ha/yr) 1	5		C/ha/yr) 51			
) бИ) 4	5		6 10 6 5]	
) 40 50 60 ears after loss	70 80 90 gina	Ž	0 10 20 30 40	50 60 70 80 90	₹ 0 0 10 20	30 40 50 60 70 8	80 90	
of AGB, dam	age level 6	€ ²	Change of NP	P, damage level 5	Char E ²⁰	nge of NPP, damage lev	rel 6	
		C/ha/yr	5		C/ha/y			
	1	රි 1 W) dd	5		5W) dd]	
) 40 50 60 ears after logo	 70 80 90 ging	z	0 10 20 30 40 Years a	50 60 70 80 90	Z 0 10 20	30 40 50 60 70 8 Years after logging		
of AGB, dam	age level 8	ہے ²	Change of NP	P, damage level 7	Char ج ²⁰	nge of NPP, damage lev	rel 8	
		J C/ha/y	5	<u></u>	Срадо Сурани Срадо С Срадо Срадо Срадо Срадо Срадо Срадо Срадо Срадо Срадо Срадо Срадо С С С С С С С С С С С С С С С С С С С			
		3W) ddf	5		W 5			0 250 500
40 50 60 ears after logg	70 80 90 ging	Z	0 10 20 30 40 Years a	50 60 70 80 90 fter logging	- 0 10 20	30 40 50 60 70 8 Years after logging		
or AGB, dama	age level 10	َ ا	Change of NP	P, damage level 9	Chan 도 ²⁰	ge of NPP, damage leve	el 10	Figure 3. Spatial d
		J C/ha/y	5		15 C/µay	·		(a) 50% and (b) 75
		5W) ddN	5		W) ddN			
) 40 50 60 ears after logo	70 80 90 ging	2	0 10 20 30 40 Years a	50 60 70 80 90 fter logging	0 0 10 20	30 40 50 60 70 8 Years after logging		4. Conclusi
of RESP, dam	nage level 2	4 (آبار ع	Change of NE	r, damage level 1	Chan 45 ج 30	ge ot NEP, damage leve	ei 2	Our results confirm
		lg C/ha/	5 0 		15 0 0			logging result in a
		≥ _1 ⊟ _3 ₽	5	-	 ≤ -15 □ -30 		-	ecosystems. Specifical
40 50 60 ears after logo	70 80 90 ging	-4	0 10 20 30 40 Years a	50 60 70 80 90 fter logging	-45 0 10 20	30 40 50 60 70 80 Years after logging	0 90	
of RESP, dam	nage level 4	(L) 3	Unange of NE	r , uamage level 3	Chan 45 کی 30	ye u⊨r, damage leve		Logging initially
		1 C/ha/	5		eu 15 0 di			foliage. Because it is
		≥ _{−1} ⊟ –3	5 ⁴ 30 -	-	≤ -15 / 1 □ -30 / 1 □ -30 / 1			the 3-D shadowing of
40 50 60 ears after logg	70 80 90 ging	-4	0 10 20 30 40 Years a	50 60 70 80 90 Iter logging	-45 <mark>0 10 20</mark>	30 40 50 60 70 80 Years after logging	0 90	lowest logging intensi
t RESP, dam	nage level 6	4 (15), 3	Unange of NE	, uamaye level 5	Chan 45 کی 30	ye ui iv∈r, uamage leve		reach its pre-logging
		L C/ha	5		ЧО 15 Ю 0 Ш			recover 50% and 75%
		€ -1 ⊒ -3 Z	5 ₁ 30 - 15	- -	⊂ -15 □ -30 □ -45	· · · ·	-	
) 40 50 60 ears after logg	70 80 90 ging	-4	0 10 20 30 40 Years a	50 60 70 80 90 fter logging	-45 0 10 20	30 40 50 60 70 80 Years after logging	0 90	
of RESP, dam	nage level 8	(1) (1) (1)	Change of NE	r, damage level 7	Chan 45 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	ye or NEP, damage leve	ຍ ປ 	A significant amou
		1 C/hav	5		15 0 0			the detrital pools, wl
		≥ -1 ⊒ -3 ⊒	5 1	-	≤ -15 d -15 H -30 H -30			following timber harv
) 40 50 60 ears after loor	70 80 90 jing		0 10 20 30 40 Years a	50 60 70 80 90 fter logging	-45 0 10 20	30 40 50 60 70 80 Years after logging	0 90	accumulated to be 304
f RESP, dam	age level 10	4 (5, -	Change of NE	P, damage level 9	Chang 45 美 30	ge of NEP, damage leve	el 10	C increase in CWD po
	-	g C/ha/y	5		30 15 			
			5		≥ -15 ⊑ -30		-	Selective logging
) 40 50 60	70 80 90	∠ -4	0 10 20 30 40	50 60 70 80 90	-45 0 10 20	30 40 50 60 70 8	0 90	

rns the Amazon forest system to a huge source of carbon to the decades after logging. The net carbon source in the first year following logging alone is as high as 40 Tg C. Afterwards, the system becomes a slight carbon sink to guarantee the recovery of the damage areas

ribution of time (in years) for the wood C pool to recover of its logged portion.

t by changing forest architecture and composition, selective scading set of impacts on the carbon cycling of rainforest

opresses NPP of the ecosystem by removing a large fraction of ard for light to penetrate into the logging-generated gaps due to es around the gaps, NPP recovers slowly afterwards, even at the Consequently, basinwide, the average recovery time for NPP to vel is 72 years, and the average time for the wood C pool to f its logged portion are 62 and 94 years, respectively.

of damaged biomass, including leaves, wood, and roots, enters increases the ecosystem heterotrophic respiration for years . The total biomass lost due to logging activities in 2000-2002 1 Tg C over Para and Mato Grosso, which results in a 234.77 Tg