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M it i l ti l i fMonitoring selective logging from space Table 1. Statistics of carbon storage before logging over Mato Grosso and Para*Monitoring selective logging from space

T i l f t h b th t d b i i t f f t d d ti d i th t th d d Alth h C b M G d P ( 31019)

g gg g

Tropical forests have been threatened by increasing rates of forest degradation during the past three decades. Although Carbon Mato Grosso and Para(n=31019) p y g g g p g
deforestation largely for the conversion of land to food crops or pastures is the major destructive force in tropical forests worldwide (Mg C/ha) Mean Max Stddeforestation, largely for the conversion of land to food crops or pastures, is the major destructive force in tropical forests worldwide

Foliage 5.1 8.5 2.5
(Houghton et al., 2000), other forest disturbances such as the selective harvest of timber have also increased in frequency and extent

Foliage 5.1 8.5 2.5
Wood 116 4 193 3 56 42( g , ), q y

(Nepstad et al 1999) In selective logging a limited number of marketable tree species are cut and logs are transported off site to
Wood 116.4 193.3 56.42

Fi R t 5 1 8 5 2 5(Nepstad, et al., 1999). In selective logging, a limited number of marketable tree species are cut, and logs are transported off site to Fine Roots 5.1 8.5 2.5

sawmills Unlike deforestation which is readily observed from satellites selective logging in the Brazilian Amazon causes a spatially **Soil Organic Carbon 19.9 41.9 9.7sawmills. Unlike deforestation, which is readily observed from satellites, selective logging in the Brazilian Amazon causes a spatially
diff thi i f l t hi h i h d t it i t llit b ti S l ti l i id d ll t l ***Coarse Woody Debris 20.9 52.8 10.8diffuse thinning of large trees, which is hard to monitor using satellite observations. Selective logging causes widespread collateral Coarse Woody Debris 20.9 52.8 10.8

* Statistics were obtained based on the aggregated 8×8 km2 mapg g g gg g p
damage to remaining trees sub-canopy vegetation and soils with impacts on hydrological processes soil erosion fire carbon storage

gg g p
** Soil organic carbon includes surface and soil microbial,  structural, slow and passive pools (see Parton et al. 1989).damage to remaining trees, sub-canopy vegetation, and soils, with impacts on hydrological processes, soil erosion, fire, carbon storage, g , , p p ( )
** *Coarse woody debris includes fine, medium and coarse fractions as described by Huang et al. (2008)

and plant and animal species.
y y g

T bl 2 I t f l ti l i i l b b d t ( t d*)p p
Recent remote sensing studies have made the monitoring of selective logging possible from the space Asner et al (2005a 2005b)

Table 2. Impact of selective logging on regional carbon budget (aggregated*)
Recent remote sensing studies have made the monitoring of selective logging possible from the space. Asner et al. (2005a, 2005b) Before Difference between pre-logging and post-logging values** 

developed a large-scale high-resolution automated remote-sensing analysis of selective logging and applied it to the top five timber- loggingdeveloped a large scale, high resolution, automated remote sensing analysis of selective logging and applied it to the top five timber
d i t t f th B ili A Th i lt h th t l i t d f 12 075 t 19 823 k 2 (±14%)

gg g
1yr 5yr 10yr 20yr 30yr 40yr

producing states of the Brazilian Amazon. Their results show that logging rates ranged from 12,075 to 19,823 km2 per year (±14%) Annual NPP 58.23 -15.38 -8.86 -7.14 -3.12 -1.75 0.01p g gg g g p y ( )
between 1999 and 2002 in these states equivalent to 60-123% of previously reported deforestation (forest clear-cut) area for those years (Tg C/yr)

Fi 1 S i l di ib i f (1) l li i bi l d (2) i i dbetween 1999 and 2002 in these states, equivalent to 60-123% of previously reported deforestation (forest clear-cut) area for those years. ( g y )
Annual RESP 58.34 24.43 2.81 0.22 -2.09 -2.93 -2.71 Figure 1. Spatial distribution of (1) total living biomass lost and (2) increase in coarse woody 

CASA-3D: an ecosystem model for tropical forest disturbance and selective logging (Tg C/yr)
58.34 24.43 2.81 0.22 2.09 2.93 2.71 g p ( ) g ( ) y

debris due to logging in years 2000 2002 over Para and Mato Grosso at an 8×8 km2 resolutionCASA-3D: an ecosystem model for tropical forest disturbance and selective logging (Tg C/yr)
Live C 972 95 -304 61 -284 79 -265 99 -231 54 -197 20 - -

debris due to logging in years 2000-2002 over Para and Mato Grosso at an 8×8 km2 resolution. 
To understand the impact of selective logging on the regional carbon budget, an ecosystem modeling approach is desired.

Live C
(Tg C)

972.95 -304.61 -284.79 -265.99 -231.54 -197.20 - -To understand the impact of selective logging on the regional carbon budget, an ecosystem modeling approach is desired.
U f t t l t t d l ith t t b d ti l l i tibl ith diff f t di t b h

(Tg C)
CWD 176 68 234 77 120 55 59 61 1 47 21 83Unfortunately, current ecosystem models either operate at a broad spatial scale incompatible with diffuse forest disturbances such as CWD
(Tg C)

176.68 234.77 120.55 59.61 -1.47 -21.83 - -

selective logging or at a very fine spatial scale that cannot easily ingest high-resolution data on forest canopy damage and disturbance
(Tg C)
Soil C 180 32 26 07 26 87 32 18 21 53 9 94selective logging, or at a very fine spatial scale that cannot easily ingest high-resolution data on forest canopy damage and disturbance

l hi i Th E D h (ED) d l i i i h i i i di id l b d i l
Soil C
(T C)

180.32 26.07 26.87 32.18 21.53 9.94 - -
over large geographic regions. The Ecosystem Demography (ED) model is an exception in that it is an individual-based terrestrial

2 2

(Tg C)g g g p g y g p y ( ) p
biosphere model which can be scaled to large areas (Moorcroft et al 2001) However it lacks an ability to simulate the carbon budget

• Based on all the 28.5×28.5 m2 pixels identified as logged in Asner et al. 2005b, total logged area: 53225 km2

** i i d i i i di i ( i ) d d (l ) i lbiosphere model which can be scaled to large areas (Moorcroft et al., 2001). However, it lacks an ability to simulate the carbon budget **   positive and negative signs indicate increase (gain) and decrease (loss), respectively.

following disturbance such as selective logging. In the case of selective logging, an appropriate modeling approach is needed to simulate Table 3. Impact of selective logging on regional carbon budget (averaged*)following disturbance such as selective logging. In the case of selective logging, an appropriate modeling approach is needed to simulate
ti b h t i t l i hil l ti f l k f it ifi i f ti th t i t Before After logging

Table 3. Impact of selective logging on regional carbon budget (averaged )
timber harvest impacts over large regions, meanwhile properly accounting for a necessary lack of site-specific information that is not Before 

logging
After logging

1yr 5yr 10yr 20yr 30yr 40yr
expressed in remote sensing data (e g changes in forest community composition light conditions and stand structure after disturbance)

logging 1yr 5yr 10yr 20yr 30yr 40yr
Annual NPP 11 07 8 15 9 38 9 71 10 48 10 74 11 07expressed in remote sensing data (e.g., changes in forest community composition, light conditions, and stand structure after disturbance).

T dd h i H l (2008) d l d i f h C i A S f d A h (CASA)
Annual NPP
(Mg C/ha/yr)

11.07 
(10 98)*

8.15 
(4 82)

9.38 
(5 43)

9.71 
(5 61)

10.48 
(6 05)

10.74 
(6 20)

11.07 
(6 39)To address these issues, Huang et al. (2008) developed a new version of the Carnegie-Ames-Stanford Approach (CASA) (Mg C/ha/yr) (10.98)* (4.82) (5.43) (5.61) (6.05) (6.20) (6.39)

Ann al RESP 11 09 8 15 15 73 11 62 10 69 10 74 10 58, g ( ) p g pp ( )
ecosystem model (CASA 3D) designed specifically to quantify changes in carbon storage and fluxes following forest disturbance in

Annual RESP 
(M C/h / )

11.09 
(10 96)

8.15 
(9 30)

15.73 
(6 66)

11.62 
(6 39)

10.69 
(6 16)

10.74 
(6 07)

10.58 
(6 08)ecosystem model (CASA-3D) designed specifically to quantify changes in carbon storage and fluxes following forest disturbance in (Mg C/ha/yr) (10.96) (9.30) (6.66) (6.39) (6.16) (6.07) (6.08)

Li C 184 95 127 04 130 81 134 38 140 94 147 46humid tropical forests. The major new features of CASA-3D include: (1) an alternative way of estimating absorbed photosynthetically- Live C 184.95 
( )

127.04 
( )

130.81 
( )

134.38 
( )

140.94 
( )

147.46 
( )

- -humid tropical forests. The major new features of CASA 3D include: (1) an alternative way of estimating absorbed photosynthetically
ti di ti (APAR) b t ki d t f hi h l ti t llit f f t f ti (A t l 2005b) (2)

(Mg C/ha) (106.92) (77.98) (80.03) (80.74) (83.49) (86.40)
active radiation (APAR) by taking advantage of new high-resolution satellite maps of forest canopy gap fraction (Asner et al. 2005b); (2) CWD 33.59 78.21 56.50 44.92 33.31 29.44 - -

a pulse disturbance module to realistically modify carbon pools after forest disturbance; (3) a regrowth module that addresses changes in (Mg C/ha) (20.50) (51.50) (36.66) (28.23) (20.55) (18.12)a pulse disturbance module to realistically modify carbon pools after forest disturbance; (3) a regrowth module that addresses changes in
i i i f ll i di b i h f i i b d fi ld b i f h

Soil C 34.28 39.23 39.38 40.39 38.37 36.37 - -
community composition following disturbance with a new set of parameterizations based on field observations of gap-phase (Mg C/ha) (20.87) (24.30) (24.23) (24.69) (23.56) (22.23)y p g p g p p
regeneration; and (4) a radiative transfer module for charactering the dynamic three dimensional light environment above the canopy and

( g ) ( ) ( ) ( ) ( ) ( ) ( )
• Values shown are mean and standard deviations

Fi 2 S ti l di t ib ti f th ti (i ) f NPP t h it l i l lregeneration; and (4) a radiative transfer module for charactering the dynamic three-dimensional light environment above the canopy and Based on all the 28.5×28.5m2 pixels identified as logged in Asner et al. 2005b, n=10114 Figure 2 Spatial distribution of the recovery time (in years) for NPP to reach its pre-logging level
within gaps after disturbance. The model was calibrated with and tested against field observations from experimental logging plots in the

g p y ( y ) p gg g
within gaps after disturbance. The model was calibrated with and tested against field observations from experimental logging plots in the
L l Bi h At h E i t i A i (LBA) j t d th iti it f k d l t l t d Change of  AGB, damage level 1 Change of  AGB, damage level 2 Change of  NPP, damage level 1 Change of  NPP, damage level 2Large-scale Biosphere Atmosphere Experiment in Amazonia (LBA) project, and the sensitivity of key model parameters were evaluated
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