

The Vegetation Three-dimensional Structure, Biomass and Disturbance Advanced Mission Concept Study

A vegetation structure community developed mission concept – Prior to the Decadal Survey

K. Jon Ranson⁽¹⁾, J. Bryan Blair⁽¹⁾, Sassan Saatchi⁽²⁾ Robert G. Knox⁽¹⁾

(1)NASA Goddard Space Flight Center, Greenbelt MD (2)Jet Propulsion Laboratory, Pasadena, CA

Presented at: 2008 NASA Carbon Cycle and Ecosystems Joint Science Workshop

Introduction

➤ The magnitudes and distributions of terrestrial carbon storage along with changes in sources and sinks for atmospheric CO₂ due to land use change remain the most significant uncertainties in Earth's carbon budget.

These uncertainties severely limit accurate terrestrial carbon accounting; our ability to evaluate terrestrial carbon management schemes; and the veracity of atmospheric CO₂ projections in response to further fossil fuel combustion and other human activities.

➤To address these critical uncertainties, NASA's Science Plan for 2007–2016 calls for "measurements of vegetation height and profiles of three-dimensional ecosystem structure to estimate aboveground biomass and carbon stocks with greatly reduced uncertainties and to characterize species habitats in ways that will enable exploration of fundamental controls on biodiversity."

➤NASA HQ called for a study to combine a Multibeam Lidar and a P-band SAR to provide the key measurements to answer the science questions.

An Advanced

Earth Science Mission Concept Study for Vegetation 3D Structure, Biomass and Disturbance

Concept Study #1

for NASA HQ

Andrea Razzaghi, Study Lead
Jon Ranson, Science Lead
Sassan Saatchi, JPL Science Lead
John Oberright, Mission Systems Engineer
Gary Sneiderman, Instrument Systems Engineer
December 21, 2006

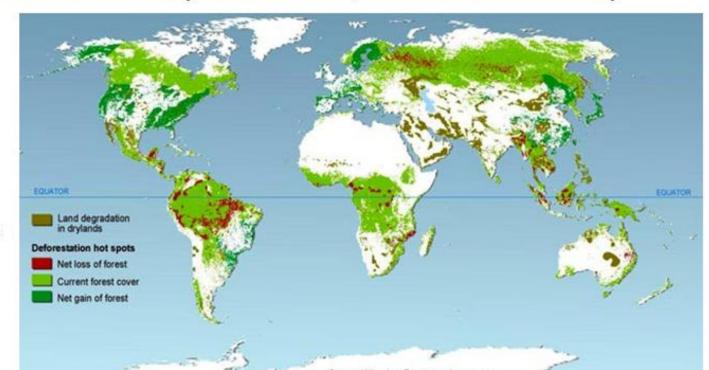
Science Working Group

➤HQ Point of Contact: Diane E. Wickland Alt. POC: William Emanuel
➤HQ Program Executive: Steve Volz

➤ Team Members

- Kathleen Bergen University of Michigan
- Warren Cohen- USDA Forest Service
- Ralph Dubayah University of Maryland
 Scott Goetz Woods Hole Research Center
- Robert Knox GSFC
- Michael Lefsky Colorado State University
- Jon Ranson GSFC
- Sassan Saatchi JPL
- Kamal Sarabandi University of Michigan
- Paul Siqueira University of Massachusetts
 Hank Shugart University of Virginia
- Guoqing Sun University of Maryland
 Robert Treuhaft –JPL
- GSFC support scientists: Bryan Blair, Forrest Hall (UMBC)

Science Question


How are the Earth's carbon cycle and ecosystems changing, and what are the consequences for the Earth's carbon budget, ecosystem sustainability, and biodiversity?

The question requires measurements of three-dimensional vegetation structure to estimate:

- (1) Carbon in Aboveground Vegetation
- (2) Ecosystem Properties
- Structural indicators of ecosystem function, habitat and biodiversity

The map shows areas with a canopy cover of at least 40% by woody plants taller than 5 meters

The carbon and ecosystem structure implications of these dramatic changes are poorly quantified

Uncertainty in the magnitude of carbon emissions from land use changes is ~60% of the estimated input

Science Question Components Carbon in Aboveground Vegetation

Disturbance event

Disease, logging, storms, etc.

Primary Forest

Older Secondary

Forest

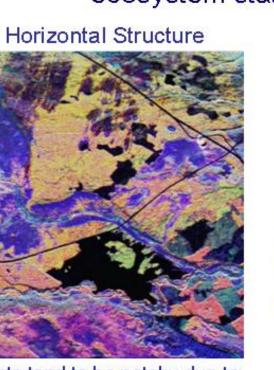
Opening

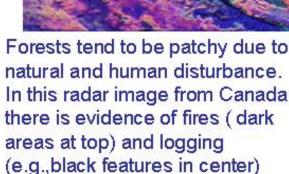
Opening

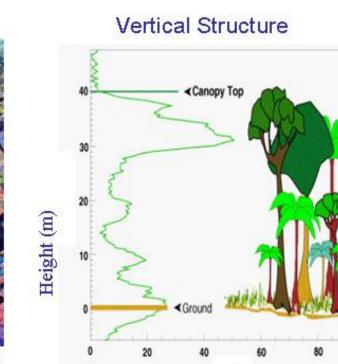
Of Vegetation and its horizontal heterogeneity.

Primary Forest

Older Secondary


Forest


Output


Fire (figure from J. Drake, pers. comm.) More Biomass

Science Question Components Ecosystem Properties

Changes in landscape spatial heterogeneity - vegetation type, height profiles and biomass relate strongly to ecosystem state and condition.

Return Intensity

The vertical dimension provides key insight into ecosystem state and function based on the heights of canopy and understory

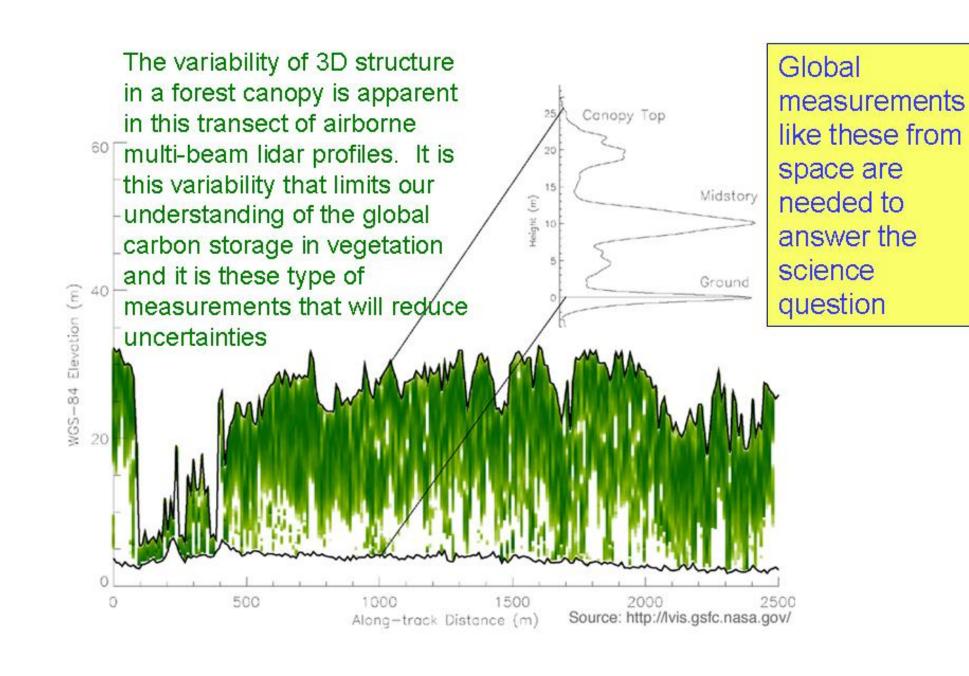
GSFC

change in response to climate.
Top – change in tree form
from bush to erect
Bottom – new species
appearing in the understory of
this larch forest in Siberia

Ecosystem structure may

Science Rationale Mission Science Objectives

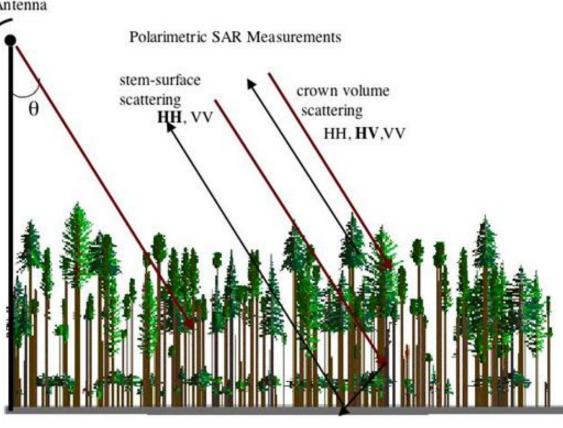
- 1) Develop globally consistent and spatially resolved estimates of aboveground biomass and carbon stocks.
- 2) Make globally consistent and spatially resolved measurements of vegetation vertical structure to understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks.
- 3) Characterize and quantify the three-dimensional structural response to disturbance.
- 4) Quantify changes in terrestrial carbon sources and sinks resulting from disturbance and recovery.
- Characterize habitat structure for biodiversity assessments.

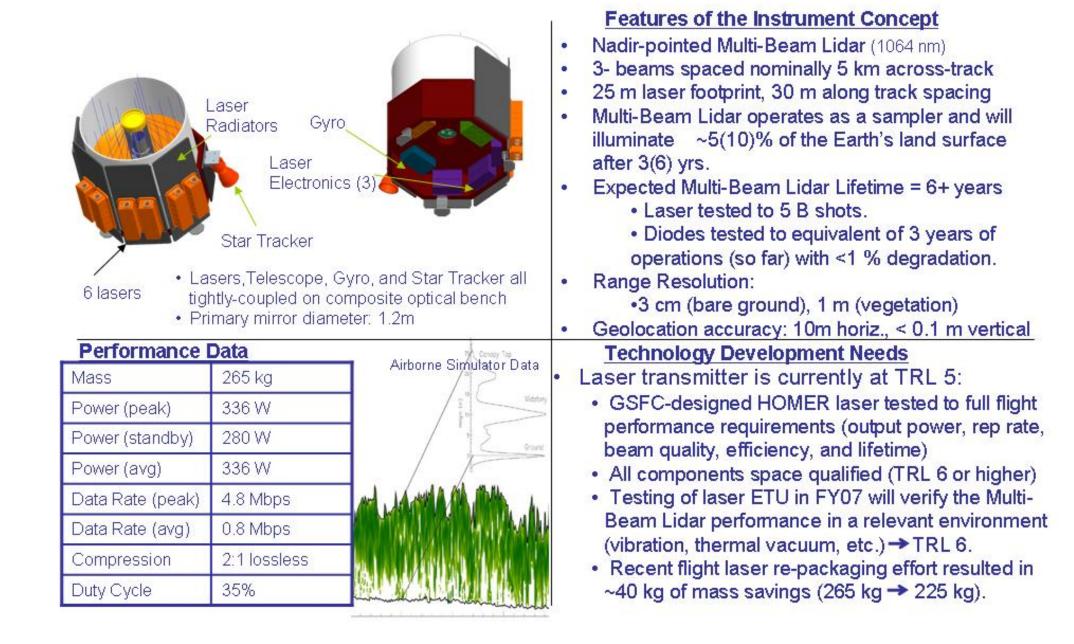

Science Rationale Measurement Overview

- > Two complementary technologies meet the science requirements.
- Multi-Beam Lidar
- P-Band SAR
- ➤ Both are sensitive to vegetation vertical structure as documented by science results from:
- Extensive airborne measurements (GSFC LVIS, JPL AirSAR)
- ICESat and SIR-C/SRTM space-borne measurements.

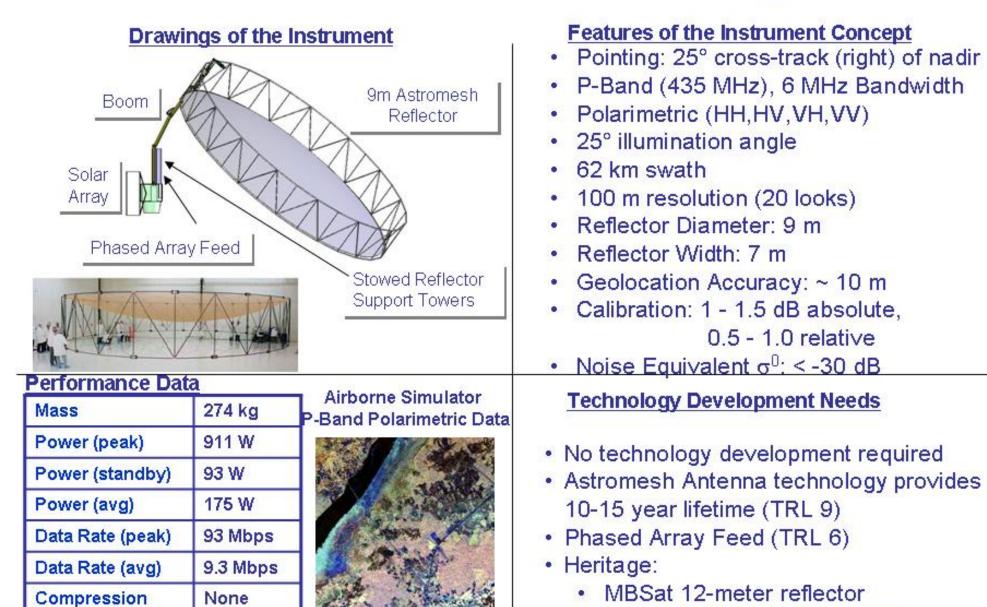
Measurements to be Made Summary Capabilities

Measurement	Multi-Beam Lidar	P-Band SAR
Vegetation height (25 m res., ±1 m)	Yes	No
Within canopy profiles, 2-3 m vertical resolution	Yes	No
Contiguous Biomass (100 m resolution, 10Mg/ha or +20%)	No, estimates possible through interpolation, at 1 km scale	Yes, up to ~200 Mg/ha
Annual Biomass Change (1 m res., precision 2-4 tons)	No, however detailed change at specific locations	Yes, 45 day repeat
Re-visit time monthly to seasonal	Yes, however only for limited locations	Yes, globally
Reduce height measurement uncertainty caused by topography	Yes, use ~25 m footprints	No


Science Rationale Instrument Rationale


Science Rationale Instrument Rationale

SAR illuminates the vegetation with microwave energy at an angle that interacts with vegetation structure and the ground and senses the entire canopy volume and woody density. Such measurements can be directly related to aboveground biomass for forests of low to medium biomass.


SAR measurements can be performed in most weather conditions and provide the capability of mapping the vegetation cover and changes due to natural and humaninduced disturbances frequently.

Multi-Beam Lidar Instrument Concept

P-Band SAR Instrument Concept

Duty Cycle

INMARSAT 9-meter reflector

Summary

- Multi-Beam Lidar samples fused with synoptic P-Band SAR data can provide accurate, high-resolution vegetation structure, biomass, and disturbance estimates to resolve large uncertainties in the carbon budget and improve understanding of habitat and biodiversity.
- This study presents three feasible mission concept options that meet the science requirements for developing vegetation structure, biomass, and disturbance data products with global coverage.
- By reducing current large uncertainties about vegetation structure, biomass, and disturbance, this mission will:
- Provide a substantially stronger basis for terrestrial carbon accounting and carbon management;
- Improve projections of CO₂ and CH₄ increases in response to further fossil fuel use, land use change, and other human activities; as well as
- Yield new insights about global habitat and associated biodiversity.

VEG3D Future

The NRC Decadal Survey called for a combined multibeam lidar and interferometric SAR (InSAR) mission to address science objectives for Deformation of the Earth, Ecosystem Structure and Dynamics of Ice (DESDynI).

➤ The mission concept preserves the ~25m footprint multibeam lidar but calls for shorter wavelength L-band radar to serve as an interferometer to obtain surface deformation measurements

➤ Strict orbit requirements for InSAR measurements may limit lidar sampling and fusion with the radar measurements over vegetation ➤ Work is now on-going to develop an appropriate mission concept and determine how best to use L-band radar and/or InSAR along with the multibeam lidar for biomass and ecosystem structure related measurements.