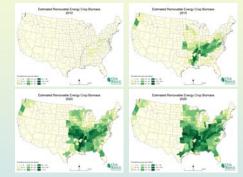
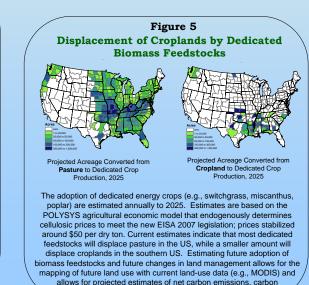


Modeling and Mapping Land Management and Net Carbon Emissions: Decision Support for Biofuels and Carbon Management on U.S. Agricultural Lands

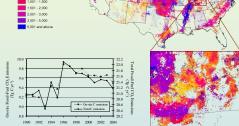
Daniel De La Torre Ugarte Chad Hellwinckel, Brad Wilson, Jim Larson Agricultural Policy Analysis Center University of Tennessee


Tristram O. West*, Craig Brandt, Bob Perlack, Mark Downing Environmental Sciences Division Oak Ridge National Laboratory * westto@ornl.gov

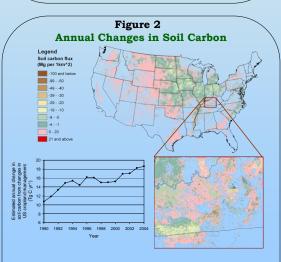


Richard Nelson Agriculture Extension Kansas State University

Figure 4 Estimated Adoption and Removal of Dedicated Biomass Feedstocks



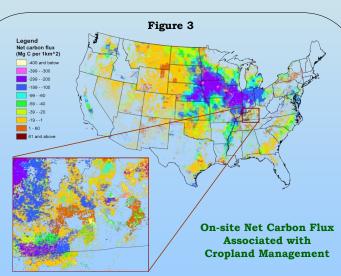
Dedicated biomass feedstocks are defined here as switchgrass, sweet sorghum, poplar, and willow. Dedicated feedstocks do not include residues generated by traditional agronomic practices (e.g., corn stover, sorghum stubble, wheat straw). These projections were generated using the POLYSYS agricultural economic model, in conjunction with estimates of residue that can be sustainably removed without exceeding the tolerable soil loss.



sequestration, and net carbon exchange.

Figure 1 On-site Fossil-fuel CO₂ Emissions from US Cropland Production

On-site fossil-fuel emissions include machinery with combustion engines used in crop production. The combination of machinery used varies for crop, crop management, and region. Total fossil-fuel emissions include off-site CO₂ emissions generated during the production and transport of cropland inputs (e.g., fertilizers, pesticides, seeds). Trends in fossil-fuel CO₂ emissions are closely associated with annual weather events and with national farm policies and incentives.


Annual changes in soil carbon associated with changes in US cropland management are estimated here using a combination of national inventory data, soil carbon accounting methods (West et al. 2008), and MODIS land cover data.

Abstract

The Energy Independence and Security Act (EISA) of 2007 calls for 36 billion gallons of biofuels by 2025. Of this amount, 16 billion gallons is to be generated from lignocellulosic feedstocks. Lignocellulosic feedstocks include dedicated energy crops (e.g., switchgrass, miscanthus, willow, and poplar) and residues from forest and crop commodities. A carbon accounting framework that includes all known carbon sources and sinks from US agricultural production has been developed. Current and future bioenergy feedstocks will be incorporated into this carbon accounting framework to estimate current and future changes in net carbon exchange. Mapping of these feedstocks using remote sensing products is essential for analyses of soil carbon, soil erosion, water quality, and biorefinery siting.

Acknowledgments

We gratefully acknowledge funding from the NASA Earth Sciences Division and the Department of Energy, Energy Efficiency and Renewable Energy. Research on soil carbon sequestration is partially supported by the Department of Energy, Office of Science.

On-site net carbon flux is defined here as all on-site carbon sources and sinks. Sources and sinks are estimated in our carbon accounting framework, and include (a) carbon uptake by crops, (b) decomposition of below-ground biomass and crop residue, (c) soil carbon accumulation, (d) fossil-fuel CO₂ emissions, (e) and soil CO₂ emissions associated with the application of agricultural lime. On-site net carbon flux does not include carbon harvested and transported off-site, which explains the largely negative values.