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Estimation of Forest Fuel Load
From Radar Remote Sensing

Sassan Saatchi, Member, IEEE, Kerry Halligan, Don G. Despain, and Robert L. Crabtree

Abstract—Understanding fire behavior characteristics and
planning for fire management require maps showing the distri-
bution of wildfire fuel loads at medium to fine spatial resolu-
tion across large landscapes. Radar sensors from airborne or
spaceborne platforms have the potential of providing quantitative
information about the forest structure and biomass components
that can be readily translated to meaningful fuel load estimates
for fire management. In this paper, we used multifrequency po-
larimetric synthetic aperture radar (SAR) imagery acquired over
a large area of the Yellowstone National Park by the Airborne
SAR sensor to estimate the distribution of forest biomass and
canopy fuel loads. Semiempirical algorithms were developed to es-
timate crown and stem biomass and three major fuel load param-
eters, namely: 1) canopy fuel weight; 2) canopy bulk density; and
3) foliage moisture content. These estimates, when compared
directly to measurements made at plot and stand levels, pro-
vided more than 70% accuracy and, when partitioned into fuel
load classes, provided more than 85% accuracy. Specifically, the
radar-generated fuel parameters were in good agreement with the
field-based fuel measurements, resulting in coefficients of deter-
mination of R2 = 85 for the canopy fuel weight, R2 = 0.84 for
canopy bulk density, and R2 = 0.78 for the foliage biomass.

Index Terms—Canopy bulk density, canopy fuel, forest biomass,
polarimetric synthetic aperture radar (SAR), radar, wildfire,
Yellowstone National Park (YNP).

I. INTRODUCTION

MAJOR ecosystems of the world (boreal forests, shrub-
lands, grasslands, and savannas) experience recurrent

fires as a result of natural causes or human activities. Statistical
evidence suggests that there is an increasing trend in fire
frequency and area burned from the early 1980s to the present,
stimulating widespread interest in understanding fire behavior
in relation to fuel characteristics and distribution [1]–[3]. When
large fires cross jurisdictional boundaries, fire managers need
fuel maps based on common data and mapping methods. Such
maps are not often available. Remote sensing of fuel loads over
large areas could aid fire management activities by providing
consistent high-quality fuel maps over large areas.
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In most wildfire simulations, models such as FARSITE [4],
fuel variables of canopy height, canopy base height, crown
bulk density, canopy biomass, and fuel load, and moisture con-
tent are important input data layers. These wildfire simulation
predictions require spatial maps of fuel variables. Historically,
these variables were estimated for coarse fuel model types from
sparse inventory of forest structure at the stand level and from
species-based algorithms at plot scale [5]. With the increased
emphasis on fuel treatments across a wide range of spatial
scales (local to regional) and a range of fuel types (natural
habitats to urban landscapes), remote sensing technology for
monitoring, measuring, and predicting the forest fuel loads has
gained unprecedented importance. Currently, passive optical
remote sensing from several spaceborne sensors are routinely
producing information on fire occurrence, severity, burned area,
and for mapping broad fuel types on regional and global scales
[6]–[8], [40]. Higher-resolution multispectral or hyperspectral
imagery has also been successful in determining the extent
and severity of fire at local to regional scales [9], [10] and
for mapping fuel moisture [41]–[44]. However, the canopy
fuel characteristics that define the most important variables for
predicting fire hazard and behavior cannot be readily derived
from the spectral information of passive optical sensors. In
recent years, there has been an increasing emphasis to use active
remote sensing data such as radar and lidar sensors to estimate
various components of forest structure such as crown and
stem biomass, foliage water content, crown bulk density, and
forest height that can be directly incorporated into fire spread
models and predictions. Several studies have demonstrated the
successful use of infrared scanning lidar systems to measure
forest canopy structure and retrieve critical fuel parameters
including canopy height, crown volume, foliage biomass, and
crown bulk density [11], [45], [46]. In particular, the vertical
profile of forest canopy derived from the full-wave lidar sys-
tem can readily provide estimates of canopy height, canopy
base height, and the distribution of foliage and branches [12].
Estimations of crown fuel variables can be obtained by using
radar sensors operating at microwave frequencies with their
polarimetric or interferometric measurements of forest biomass
components and height [13]. Radar measurements, particularly
at low frequencies (400–1500 MHz), are sensitive to crown
and stem biomass and moisture content as direct measurements
of biomass and structure [14]. Radar interferometric measure-
ments are capable of providing forest height that can be readily
transformed to fuel loads when combined with allometric equa-
tions available for different forest types [13]. More importantly,
radar is not sensitive to visibility conditions and can be obtained
day or night and through smoke and cloud cover. This makes
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Fig. 1. YNP. (left) AIRSAR coverage and location of sample stands (HyMap03 was acquired along with AIRSAR but never used in this paper). (right) Vegetation
cover map derived from ecosystem map [15]. The vegetation and fuel types are LP, LP1, LP2, and LP3 for climax and four successional stages of lodgepole pine,
DF for douglas fir, WB, WB1, and WB2 for climax and two postdisturbance successional stages of whitebark pine, SF for Engelmann spruce and subalpine fir,
Riperian type for herbaceous and sagebrush, KH for krummholz zone, and non-veg and rocky and geyser surfaces, and burned for recent burned areas with dead
trees or early successional stages.

spaceborne radar remote sensing an important technique for
global monitoring and managing forest fire.

In this paper, we concentrate on the use of high-resolution
synthetic aperture radar (SAR) sensors to develop the spatial
distribution of fuel loads for fire management in the Yellow-
stone National Park (YNP). By developing algorithms for esti-
mating biomass components and forest structure from airborne
polarimetric SAR measurements, we demonstrate the capability
of radar systems for the global monitoring of forest fuel and
potential tools for forest fire management. Currently, several
airborne sensors such as NASA’s Airborne SAR (AIRSAR)
system, the GeoSAR interferometric sensor, and commercial
sensors such as the AeS-1 from Intermap Technologies Corpo-
ration are available for local to regional mapping of forest fuel.
These sensor technologies have the potential of being deployed
in future NASA or international earth observing platforms to
improve the monitoring and management of wildland fuels on
a global scale.

II. STUDY AREA

We chose YNP as our study site for several reasons (Fig. 1).
1) The park contains a variety of fuel types common to the
Northern Rocky Mountains region consisting predominantly of
coniferous forests and sagebrush shrublands [15], [16]. 2) The
ecology of forest fire and postfire successional history have
been well documented [16], [17]. The park has been maintained

as a protected area since 1872, limiting human impact and
development in the region. 3) A large archive of field, aerial
photography, geographical information system (GIS), and re-
mote sensing data is available for comparison and validation
studies [18], [19], [47].

YNP covers an area of approximately 899 500 ha surrounded
by seven national forests in three different states (Wyoming,
Montana, and Idaho). It consists of large volcanic plateaus
of rhyolitic rocks surrounded by mountains of predominantly
andesitic rocks, with varying soil fertility and water holding
capacity, and a rough terrain varying in elevation from ap-
proximately 1800 to 3800 m. Severe droughts, various man-
agement approaches, and large-scale fires have contributed to
the ecological evolution and vegetation patterns of the park
since its establishment in 1872. The high relief terrain of
the park provides unique challenges to fire fighters and fire
managers and similar difficulties for mapping fuel loads for
GIS and remote sensing experts. Existing vegetation and fuel
maps are based on different criteria and with variable degrees
of reliability, creating a new incentive for developing a common
fuel map to effectively manage cross-boundary fire events. Ap-
proximately 83% of the total forested area of YNP is dominated
by lodgepole pine (Pinus contorta var. latifolia) ranging in age
up to 300–400 years [15]. The lodgepole pine forest occurs
as a mosaic of successional stages on extensive gently rolling
plateaus with limited variations in tree species, particularly
mixtures of coniferous and deciduous trees. Canopy tree density
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ranges from 250 to 1000 trees/ha and reaches approximately
25 m tall. Crown biomass ranges around 20–40 Mg/ha. Under-
story trees are generally sparse, and fine surface fuels are light,
consisting mostly of grouse whortleberry (Vaccinium scopar-
ium) approximately 20–30 cm tall. Sagebrush (Artemisia tri-
dentata) stands with fuel loads of approximately 0.5–0.7 kg/m2

are a minor component and include pockets of wet marshes and
dry to mesic grasslands.

Existing maps such as that shown in Fig. 1 provide infor-
mation about vegetation types, successional stages, and distur-
bance history. Cover types are named for their dominant canopy
followed by a ranked value indicating the successional stage.
For example, lodgepole pine cover types include, in increasing
progress from disturbance toward climax, LP0, LP1, LP2, and
LP3. LP0 stands are those that occur following a stand replac-
ing disturbance, such as crown fire until the time of canopy
closure, which often occurs at about 40–50 years in YNP.
LP3 stands represent a subclimax stand leading to a spruce-fir
climax [15]. These maps are based on detailed interpretation of
aerial photography surveys and extensive field measurements
and are used for wildfire management [15]. However, they are
mostly created more than 20 decades ago, and the process
of reproducing them is labor intensive and cannot be done
frequently.

III. FIELD DATA

Field data for this paper were collected between June and
September of 2002 and 2003 by a team of trained field person-
nel. A total of 833 plots were sampled in 64 vegetated stands
across a range of vegetation types and disturbance histories
in YNP. Stand boundaries were delineated using interpretation
of remote sensing images, and sampling areas between 5 and
10 ha were selected based on how well they represent the
vegetation types and fire histories in the park, their coverage
by remote sensing data, and logistical considerations for field
sampling. A forest stand is defined as a sampling area with
uniform distribution of trees and species and representative of
larger YNP vegetation and fuel types. An average of 12 sample
plots was located within each stand using a regular grid where
the spacing between plots varies from stand to stand. Distances
between plots ranged from 50 to 75 m based on stand size and
shape but were consistent within a given stand. The use of a
regular grid design maximized the sampling efficiency while
ensuring unbiased plot location. All plots were geolocated
using Trimble Geoexplorer II geographic positioning system
(GPS) units. Vegetation sampling methods were designed to be
compatible with existing fuel sampling protocols for invento-
rying weight of forest floor duff, forest floor litter, herbaceous
vegetation, shrubs, small conifers (< 3.05 m high), and downed
woody material [22]. This method was modified slightly and
expanded to include procedures for measuring mature trees
as well as additional measurements on herbaceous vegetation
and shrubs. Plot basal area was measured using a 2.5-m2 basal
area factor forestry prism. Vegetation type was described with
regards to habitat type and cover type following Despain [15].
At each plot, the following parameters were recorded: habitat
type, cover type, average duff depth, and GPS locations. The

TABLE I
AIRSAR SYSTEM PARAMETERS USED IN DATA ACQUISITION

OVER THE YNP IN JULY 2003

GPS locations were accurate within a few meters (less than
10 m), allowing extraction of remote sensing data from plot
locations with relatively high accuracy. Percent canopy cover
was measured using a handheld spherical densitometer. For
mature trees, diameter at breast height (DBH) at 1.3 m from
ground, species, live/dead, and height to the top and base of
live crown were measured for each tree counted by the prism
method. The plots established by the prism were circular and
variable in radius. Downed wood in three size categories was
measured along a line transect. The average height and stem
count were recorded for all species of shrubs found on 1-m2

microplots. For herbaceous vegetation, the biomass of live
vegetation and litter was measured on the highest biomass
microplot (clipped, dried, and weighed) and estimated as a
percent of the standard on other microplots, and the vegetation
height and digital photos were recorded.

Field data for each of the 833 sample plots were entered
into a database and checked for errors. Allometric equations
from Brown et al. [22] and Van Hooser and Chojnacky [23]
were used to calculate plot and stand-level fuel loads and live
biomass. Live biomass for trees was separated into stem and
crown components, with crown components further divided
into diameter size classes commonly used for fuel assessments:
0–0.25 in (0.25–0.6 cm), 0.25–1 in (0.6–2.5 cm), 1–3 in
(2.5–7.6 cm), and greater than 3 in (> 7.6 cm). Live biomass
was calculated per sample and then aggregated up to the plot
and stand levels for comparison with remote sensing data.

IV. REMOTE SENSING DATA

In July 2003, the NASA Jet Propulsion Laboratory AIR-
SAR system on the NASA DC-8 aircraft acquired polarimetric
images along with simultaneous interferometric topographic
SAR (TOPSAR) data over YNP. The entire YNP was covered
in a mosaic mode with north–south strips 15 km wide at
10-m spatial resolution. In addition, a diagonal flight line with
233◦ heading in the northeast to southwest direction at 5-m
resolution (Table I) was acquired as part of a multisensor cam-
paign (including hyperspectral and lidar sensors). The AIRSAR
was operating at P-band (435 MHz, 20-MHz bandwidth, 10-m
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Fig. 2. Sample of AIRSAR imagery acquired over the northeastern section of YNP in July 2003 with three-band polarimetric data on the left and the digital
elevation image on the right. Locations A and B in the images denote burn scars from the 1994 and 1988 fires, respectively. Location C denotes an area of
sagebrush/grassland vegetation in the Lamar River valley.

resolution), L-band (1.25 GHz, 40-MHz bandwidth, 5-m res-
olution) in fully polarimetric modes, and C-band (5.3 GHz,
40-MHz bandwidth, 5-m resolution) at vertical polarization
(VV) and interferometric mode. The images have a swath width
of approximately 10 km with incidence angles ranging from
about 28◦ to 63◦ with approximately 45◦ at the center of the
swath. Fig. 2 shows a short section of the high-resolution
AIRSAR data used in this paper over the Lamar River valley
in the northeastern section of the park. All images were ter-
rain corrected using the digital elevation data acquired by the
TOPSAR interferometric modes [32], [48]. The images were
orthorectified in a Universal Transverse Mercator projection
using the Landsat Enhanced Thematic Mapper data (15-m
resolution) with a large number of ground control points
(123 points) that provided a registration accuracy of approxi-
mately 25 m (five pixels). For all data analysis and algorithm
development in the next sections, we resampled SAR images to
their lowest common resolution of P-band data (10 m).

V. METHODS

A. Estimation of Forest Biomass Components

Estimation of forest biomass from radar data is possible
due to the physical relationship between radar backscatter
measurements and forest structure and biomass components.
The backscatter signal at linear polarizations (HH, HV, VV;

horizontal (H) and vertical (V) for transmit and receive configu-
rations, respectively) is sensitive to those structural components
that can resonate with the radar wavelength. At the same time,
a strong backscatter (above noise level) results from objects
with reasonable moisture content. In other words, depending
on the wavelength of the measurements, the radar return from
a forest can be related to scattering from live stems, branches,
and foliage based upon their abundance and moisture content
within a resolution cell. In most forest types, successional
stages translate into differences in structural parameters such as
tree size, density, and biomass components. These parameters
are directly related to fuel loads in the forest canopy that are
normally consumed in crown fires such as live and dead foliage,
lichen, and fine live and dead branchwood [5]. Furthermore,
as forest fuels are modeled based on the amount of vegetation
biomass components, radar measurements can provide the most
direct estimates of forest fuels.

There are two approaches for estimating the forest param-
eters, namely: 1) the statistical approach (e.g., regression
analysis) and 2) the inversion of physically based backscatter
models. The statistical approach is based on the correlation
of radar backscatter measurements at different frequencies and
polarizations with forest structure and biomass components
obtained from field measurements [24], [25]. By separating
regression models based on forest type and landscape fea-
tures (topography), we can improve the accuracy of biomass
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Fig. 3. SAR polarimetric and interferometric measurements of a typical forest
over flat landscape, with dominant polarizations contributing to crown and
stem-surface scattering mechanisms, and interferometric measurement of the
height of the scattering phase center as the height of an equivalent scatterer
representing the collection of scatterers within a pixel.

estimation [14]. The estimation of forest structural parameters
from physically based models, on the other hand, requires
inversion techniques such as the semiempirical approach [14],
a parametric approach [26], or the use of the neural network
training approach [27], [28].

Radar backscatter measurement from a forest stand includes
several scattering mechanisms, as shown in Fig. 3. In general,
the scattering mechanisms are of the form

σ0 = σ0
gr + σ0

veg

σ0
gr = (1 − η)σ0

s + ησ0
se−βW

σ0
veg = ησ0

v(1 − e−βW ) + ησ0
vse

−βW (1)

where η is the fraction of the area filled by the forest canopy,
e−βW is the vegetation transmitivity with β as the two-way
attenuation in the forest, and W is the biomass assuming 100%
dry weight. The series of equations given in (1) simplifies a
more complex backscattering model with different scattering
mechanisms [14], [29], [30]. The uppermost equation divides
the total backscatter σ0 into ground σ0

gr and vegetation σ0
veg

contributions. The ground term includes the direct ground scat-
tering from the surface σ0

s weighed by the coefficient (1 − η)
and a second term that represents the surface scattering under
the vegetation canopy. The vegetation contribution is given by
the last equation and includes both direct volume scattering
σ0

v and volume–surface σ0
vs interaction term. The volume scat-

tering σ0
v and volume–surface σ0

vs (double-bounce) scattering
cross sections are both a function of vegetation water content
and biomass. Note that, for simplicity, we have considered
the forest as one layer and have suppressed the subscripts
showing the transmitted and received polarization coefficients.
By including the wave polarizations in the above equations,
all terms except the biomass (W ) and the fraction of forest
cover η will be different. In other words, polarimetric radar
backscattering can provide independent measurements of forest
structure and biomass.

From (1), it is clear that the estimation of the aboveground
biomass from a physically based model requires several as-

sumptions about the forest or a simplification of the model
into a parametric form [14], [26]. In this paper, we start by
prescribing a general statistical regression model that relates
the biomass components to radar backscatter measurements.
This model has a quadratic form to approximately mimic the
loss of sensitivity of radar backscatter at higher biomass values.
By replacing W by its natural logarithm log(W ) and the
backscatter coefficients in decibels as 10 log(σ0), the general
form of the regression model can be written as

log(W ) = a0 + a1σ
0
HV + a2

(
σ0

HV

)2 + b1σ
0
HH

+ b2

(
σ0

HH

)2 + c1σ
0
VV + c2

(
σ0

VV

)2
(2)

where W is the total aboveground biomass or its components
(stem, branch, and foliage), and σ0

HV, σ0
HH, and σ0

VV, respec-
tively, represent the radar backscatter measurements at three
transmit and receive polarization configurations [31]. Equation
(2) can be considered a parametric equation including all
scattering mechanisms represented by the radar polarimetric
measurements [26]. The form of (2) as a second-order poly-
nomial can be readily expected from (1) after substitution of
W with log(W ) and the expansion of each term in log(W ).
Therefore, (2) can be referred to as a semi-empirical algorithm
for estimating forest biomass components.

To customize (2) for our application over YNP, we first
divide the forest biomass into crown and stem components
and then include the effect of surface topography on changing
the scattering mechanisms. The following equations were used
as the basis of the semiempirical model for crown and stem
biomass estimation:

log(Wc) = a0+ a1σ
0
HV cos(θ0−θl)+ a2

(
σ0

HV cos(θ0−θl)
)2

+ b1σ
0
HH sin(θ0−θl)+ b2

(
σ0

HH sin(θ0−θl)
)2

+ c1σ
0
VV cos(θ0−θl)+ c2

(
σ0

VV cos(θ0−θl)
)2

(3)

log(Ws) = a0+ a1σ
0
HV sin(θ0−θl) + a2

(
σ0

HV sin(θ0−θl)
)2

+ b1σ
0
HH cos(θ0−θl)+ b2

(
σ0

HH cos(θ0−θl)
)2

+ c1σ
0
VV cos(θ0−θl)+ c2

(
σ0

VV cos(θ0−θl)
)2

(4)

where Wc and Ws are, respectively, the crown and stem bio-
mass, and the angles θ0 and θl are the incidence angle of the
SAR platform at the center of the image pixel and the local
incidence angle at the same location. When θ0 and θl are equal,
the surface has no topography, and the biomass is estimated
from those terms representing the dominant scattering mecha-
nism of forest over a flat surface [32]. The local incidence angle
is calculated in terms of surface slope and aspect angles as

cos θl = sin α sin θ0 cos(β − βs) + cos α cos θ0 (5)

where α is the local slope, β is the azimuth angle of the radar
illumination direction, and βs is the aspect angle at the local
slope [32]. Given the geometry of SAR platform and the topo-
graphic data acquired by AIRSAR C-band interferometry, the
local incidence angle for any pixel location can be calculated
from (5).

We used (3) and (4) to estimate the crown and stem biomass.
Here, by biomass, we refer to dry weight per unit area of
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forest component. However, depending on the type of field
data used to estimate the unknown coefficients in (3) and (4)
, the definition can be changed to forest water content or wet
biomass. The first step is to develop training and test data sets
to estimate the unknown coefficients and to assess the accuracy
of the estimation. There were 623 plots within the area covered
by radar images. We extracted backscattering coefficients from
an area of 5 × 5 pixels centered at plot locations. The average
backscatter represented an area of 25 × 25 m that was slightly
larger than the average plot size. The data had better quality
than the single pixel values because of the reduced errors due to
the misregistration and the speckle noise (450 looks at L-band
and 225 looks at P-band).

To develop training and test data sets, we used a combination
of bootstrapping and holdout procedures to randomly split
the plot data into training and testing subsamples [34]. The
training data were used to estimate the coefficients of (3) and
(4), respectively, for the stem and crown biomass, and the test
data were used to evaluate the accuracy of the estimation. The
estimation was performed using a least-squared second-order
polynomial fit to the data with the singular value decomposition
procedure [49]. Once the coefficients were estimated, the result-
ing equation was evaluated using the testing subsample, and
the correlations between predicted and measured values were
computed using Spearman’s rank correlation coefficients. The
inclusion of the bootstrapping technique provided an additional
nonparametric procedure for including sampling variability in
predicting the expected accuracy of the estimation procedure.
In the bootstrap method, the holdout approach is repeated many
times by replacing the training and test data with a new random
split to the initial plot data. The procedure was repeated several
times to come up with an optimum algorithm (with highest
estimation accuracy) and an unbiased accuracy assessment of
biomass estimation [33], [34]. Since the bootstrapping iteration
approach was performed using a random sampling technique,
the optimum algorithm was obtained by simply choosing the
best algorithm out of all randomly developed algorithms. The
iterations were performed 25 times, which provided sufficient
sampling to reach the Monte Carlo estimation of the accuracy
[34]. The estimation and evaluation program was written in
interactive data language and included the necessary statistical
and estimation routines.

B. Estimation of Fire Fuel Parameters

Fire fuels are defined as the aboveground organic biomass
components that can contribute to wildland fire. They can
be divided into live or dead, woody or herbaceous, and into
different size categories. In general, there are two main types
of wildland fires, namely: 1) surface and 2) crown fires [5].
Surface fire is the combustion of the fuel layer within or
immediately above the ground surface and below the canopy
(generally less than 2 m in height). Surface fuels consist of
organic material in the soil, needles and leaves, grass and other
herbaceous and shrubby vegetation, tree seedlings, and dead
and down branch wood and logs on or near the soil surface
[22]. Crown fire, on the other hand, is the combustion of the
elevated canopy fuel consisting of live and dead foliage, lichen,

and fine live and dead branchwood. Crown fuels often have
higher moisture content and lower bulk density than surface
fuels. Crown fires are intense and fast moving, with their spread
depending primarily on a physical situation including the quan-
tity and arrangement of fuels, topography, and weather. Remote
sensing technologies image vegetation canopies and are capable
of measuring the crown fuel characteristics including fuel loads
and moisture. Surface fuel characteristics, on the other hand, are
often obscured by canopy vegetation, limiting their ability to be
directly derived from remote sensing data. Instead, surface fuels
are either estimated through their correlation with canopy fuels
or extrapolated from field measurements. Crown fuel character-
istics are defined in terms of several parameters such as canopy
fuel weight, crown bulk density, canopy cover, foliage moisture
content, canopy base height, and canopy height [5]. Among
these, we focused on three parameters in this paper.

1) Canopy fuel weight is defined as the biomass of the
canopy including foliage and thin branchwood and is
often computed for forest tree species using allometric
equations [21], [23]. These equations are developed from
field data and are capable of separating foliage and
branch biomass using measured structural variables such
as tree DBH, tree height, and crown ratio. The biomass
of small branches is associated with several classes of
fuel loads. In particular, variables such as 1-h and 10-h
branchwood fuels representing the biomass of 0–1- and
1–3-cm branchwoods are derived from similar allometric
equations. Alternative approaches to allometric equations
are leaf area index measurements [35] and radar-based
crown biomass estimation [14]. In this paper, we devel-
oped canopy fuel weight from the radar data.

2) Crown bulk density is defined as the mass of available
canopy fuel per unit canopy volume and is an important
parameter to predict both the crown fire initiation and the
spread. However, it is a difficult parameter to measure
in the field. For stands where the canopy biomass is
assumed to be uniformly distributed along the canopy
height, this parameter can be computed as the available
canopy fuel load or biomass divided by canopy height.
However, in general, for complex canopy structures, it
is obtained from stand inventory data [36]. Knowing the
canopy vertical profile, the bulk density can be defined as
the running mean of the canopy density for layers 0.3 m
thick with uniform canopy distribution. Remote sensing
measurements such as the lidar full-wave vertical profile
or radar interferometric measurements can be converted
into the crown bulk density [11], [13]. In this paper, we
estimated the crown bulk density from the field-measured
forest structure using the relationship

CBD = Wc/(Ht − Hblc) (6)

where CBD is the effective crown bulk density assuming
a uniform vertical distribution of canopy, Wc is the total
canopy weight (live and dead), Ht is the average height of
the canopy, and Hblc is the average height to base of the
live crown of all trees in a plot. After computing the bulk
density from the structural data measured at the plot level,
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Fig. 4. Vertical profile of available fuel in terms of canopy bulk density in a
near climax LP3 or spruce-fir forests in YNP. Canopy mean height and canopy
base heights are shown in terms of bulk density values of 0.011 kg/m3.

we used a regression model between CBD and the crown
and stem live biomass to convert the radar-measured
biomass components to crown bulk density (Fig. 4).

3) Foliage biomass is an important parameter used in fire
fuel models with more influence on fire spread than
initiation [5]. For a given set of environmental conditions,
moisture content and biomass of conifers vary among
species and on a seasonal temporal scale. There is little
observed variation in these parameters on a daily or even
weekly temporal scale, although annual patterns can be
seen during times of extreme conditions such as drought.
Several studies in North America have contributed to
developing allometric equations for foliage moisture con-
tent and tabulating values for different tree species [5],
[50], [51]. In general, for old foliage (needles from previ-
ous years), the values for moisture content can vary from
low values of approximately 80% of the dry weight in
severe late summer drought to high values of less than
125% in the spring. New growth of the current year starts
at about 250%–300% in late June and dries to about 130%
by late August. A default average value of 100% is a
useful working number for late summer when fires are
most likely to burn large acreages. The 100% moisture
content assumes that half of the live foliage mass is
due to water. Foliage biomass and moisture content can
also be obtained directly from radar remote sensing [14],
[24], [26] or from optical remote sensing data [37], [42],
[44], [45]. In this paper, we did not measure the foliage
moisture content in the field and hence do not have data
for the development and validation of radar-derived mois-
ture content [26]. However, by assuming 100% moisture
content as the mean moisture for all foliage types in the
study areas at the time of the AIRSAR data acquisition
(mid to late summer), the foliage biomass was assumed
to be equal to the total foliage water content. We used
the field-derived relationship between the total canopy
biomass and the live foliage biomass to convert the radar
measurements to the distribution of foliage dry biomass
over the study area. The overall procedure for estimating
the canopy fuel parameters from SAR data is shown in
the flowchart provided in Fig. 5 and discussed in the
following sections.

Fig. 5. Flowchart summarizing the methodology to derive fuel variables from
combining SAR measurements and field data.

VI. RESULTS

A. Radar Sensitivity to Aboveground Biomass

We started the analysis by examining the sensitivity of the
radar backscatter measurements at L-band and P-band to the
total aboveground live biomass (AGLB). We used six SAR
images, two frequencies (L-band and P-band), three polar-
izations (HH, HV, and VV) at 10-m spatial resolution, and
extracted backscattering coefficients from 427 plots from 42
forest stands. The relations between polarized backscatter and
log (AGLB) are shown in Fig. 6. The regression coefficients
(R2) were obtained by fitting a second-order polynomial to the
backscatter data at each polarization. The second-order polyno-
mial provided a better fit to the data than the linear regression
model and was better suited to represent the saturation of
radar signal at higher biomass values. For the P-band-polarized
backscatter measurements, R2 values were 0.61, 0.69, and 0.49,
respectively, for PHH, PHV, and PVV. For L-band measure-
ments, R2 values were 0.50, 0.42, and 0.57, respectively, for
LHH, LHV, and LVV. The spread in the data depends on several
factors. First, the small size of the forest plots and the errors
in geolocation can often cause errors in extracting the exact
backscatter values. Second, speckle in high-resolution radar
imagery can introduce variations in backscatter measurements
over forests with similar AGLB values. Finally, depending on
the canopy architecture (branch and leaf orientation), canopy
moisture content, spatial distribution of trees, soil roughness
and moisture, and topography, the backscattering coefficients
may vary for forests with similar AGLB. Moreover, the errors
associated with the field data and allometric equations also
contribute to the variations shown in backscatter plots. The
AGLB values range from 3 Mg/ha for early successional forests
to 347 Mg/ha for mature forests. The sensitivity of radar
backscatter to biomass decreases for high biomass density,
starting to level at AGLB values greater than 200 Mg/ha for
P-band channels and greater than 100 Mg/ha for L-band chan-
nels. However, the low sensitivity of radar to high biomass,
the so-called saturation region, is different for copolarized and
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Fig. 6. Backscattering coefficient at linear polarization combinations versus the natural logarithm of field-measured AGLB for 427 forest plots. The regression
coefficients were found by fitting a quadratic equation to the data.

TABLE II
REGRESSION MODELS SUMMARIZING THE RELATIONSHIP OF THE SAR

POLARIMETRIC BACKSCATTER MEASUREMENTS IN DECIBELS WITH THE

NATURAL LOGARITHM OF THE AGLB IN MEGAGRAMS PER HECTARE

cross-polarized backscatter and depends on a variety of forest
and surface parameters discussed earlier.

The relations shown in Fig. 6 and repeated in Table II also in-
dicate that the polarized backscattering measurements provide
different information about the forest structure and biomass
and suggest that optimal approaches estimating biomass might
combine all measurements as shown in (2)–(4). Another way of
looking at the sensitivity of the radar backscatter to biomass is
to include a larger range of biomass from very low vegetation

to dense old growth forests. By extracting the radar backscatter
for polygons over all 64 stands where the inventory plots were
established (including early successional and sagebrush sites),
new plots for L-band and P-band backscatter were generated
(Fig. 7). In these plots, the errors associated with misregistra-
tion and speckle noise were reduced as each stand polygon
includes a large number of 10-m pixels (more than 100). The
sensitivity and the dynamic range of the backscatter measure-
ments with respect to log (AGLB) improved, resulting in values
for R2 of 0.81, 0.88, and 0.83 for PHH, PHV, and PVV, and
0.56, 0.71, and 0.45 for LHH, LHV, and LVV, respectively.
A linear regression provided the best fit to the data as the
stand numbers were limited and represented mainly the low and
high values.

Both plot and stand-level backscatter show higher sensitivity
to aboveground biomass from the P-band data. The L-band
backscatter data show less variations and better sensitivity for
low biomass values. By examining the sensitivity of radar to
aboveground biomass, we concluded that including plots or
stand data from a lower range of biomass improves the cor-
relations between backscatter and biomass and would improve
the development of the estimation algorithm. This approach has
been common in remote sensing data analysis, in particular
in radar and lidar estimation of forest structure and biomass
[11], [24], [38], [39]. By including a larger range of biomass
values in the data analysis, the dynamic range of measurements
is increased in comparison with the natural variations in the
data caused by other structural and environmental variables,
especially in the high end of the biomass values.
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Fig. 7. Backscattering coefficient at linear polarization combinations versus the natural logarithm of field-measured AGLB for 64 stands including forests and
other nonforest vegetation types.

Fig. 8. Field-measured versus predicted crown biomass in megagrams per hectare from (a) L-band (R2 = 0.54, P -value < 0.0001), (b) P-band (R2 = 0.55,
P -value < 0.0001), and (c) combined L-band and P-band (R2 = 0.73, P -value < 0.0001). Line shows 1 : 1 relationship.

B. Estimation of Crown and Stem Biomass

Estimation of crown biomass was performed using (3).
Here, by crown biomass, we refer to both the biomass of the
forest tree crown and the biomass of nonforest vegetation
such as the sagebrush. The backscatter data were extracted
for all plot locations within the 10-m resolution SAR images
(n = 623) and were used in bootstrapping and holdout
procedure, discussed in Section V, to estimate the coefficients
of (3) at L-band and P-band frequencies (Table III). The
comparison of field-measured and predicted biomass values is
given in Fig. 8(a) and (b), respectively, for L-band and P-band.
The estimation provided similar results at both frequencies,
R2 = 0.54 for L-band and R2 = 0.55 for P-band. However,
the noticeable difference was the pattern of the points spread
around the 1 : 1 line. The L-band results showed a very close
correlation at lower biomass values and almost no correlation
at high crown biomass values. This was expected because the
attenuation of the L-band signal increased when the density
of foliage and branches increased in tree crowns, reducing the
L-band sensitivity to high crown biomass.

The P-band result, however, showed an opposite pattern,
with larger spread of points at low biomass values. For areas
of low biomass density such as early successional forests and

sagebrush, the P-band backscatter is very sensitive to soil
surface and subsurface conditions. The overestimation of
crown biomass for low-density vegetation is primarily due to
the higher backscatter returns from the subsurface soil layers
(moisture and texture gradients), similarly observed in Fig. 7. A
close examination of both results suggested that a combination
of L-band and P-band data for, respectively, the low and high
biomass values would probably produce the best accuracy
for crown biomass estimation. By using only cross-polarized
backscatter in L-band and P-band and a quadratic form as in
(3), we developed a new algorithm with the general expression

log(Wc) = a0+ a1LHV cos(θ0−θl)+ a2 (LHV cos(θ0−θl))
2

+ b1PHV cos(θ0−θl)+ b2 (PHV cos(θ0−θl))
2 .

(7)

The coefficients for (7) are estimated using similar approach
and are provided in Table III. The result from the new algorithm
is shown in Fig. 7. The comparison with the field-measured
data produced an improved R2 = 0.73 (P < 0.00001), with
standard root mean square error (RMSE) of 1.87 Mg/ha, and
with points spreading more evenly around the 1 : 1 line.
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TABLE III
COEFFICIENTS OF THE ESTIMATION ALGORITHM FOR CROWN AND STEM BIOMASS

DERIVED FROM MULTIVARIATE NONLINEAR REGRESSION ANALYSIS

Fig. 9. Field-measured versus predicted stem biomass in megagrams per hectare from (a) L-band (R2 = 0.57, P -value < 0.0001) and (b) P-band (R2 = 0.81,
P -value < 0.0001). Line shows 1 : 1 relationship.

For stem biomass, we estimated the unknown coefficients in
(4) using a similar approach and the extracted L-band and P-
band backscatter data from the plot locations. In this analysis,
we included only the forest plots (427 plots from 42 stands)
where data on the stem biomass were available. The coefficients
are provided in Table III. Following similar analysis as in esti-
mating the crown biomass, we calculated the average unbiased
estimation of accuracy from the bootstrapping approach. As
expected, the P-band data provided better accuracy (R2 = 0.81;
RMSE = 11.3 Mg/ha) than L-band (R2 = 0.57, 19.7 Mg/ha).
Fig. 9 shows the prediction of stem biomass from both bands
and the spread of the data around a 1 : 1 line representing an
ideal estimation. These figures were compiled using all forest
plots including early successional forests. The estimation errors
associated with these plots are greater than the mean error due
to the degraded sensitivity of P-band measurements to low bio-
mass values. By eliminating plots representing biomass values
less than 20 Mg/ha, we were able to improve the estimation
error by more than 10%. This result suggests that the best region
for P-band biomass estimation is for forests above 20 Mg/ha.

The performance of the L-band and P-band estimation algo-
rithms degraded after approximately 100 and 200 Mg/ha of bio-
mass, respectively, when the radar measurements increasingly
lost their sensitivity to biomass increments. Further examina-
tion of biomass prediction at plot locations suggested that the
performance of the algorithm also degraded over areas at higher
elevation and steeper slopes. For these areas, the backscat-
tering mechanisms from tree stems were more complex, and

the scattering contributions at different polarizations were not
well represented by the geometrical relations given in (4). The
overall accuracy from the P-band estimation was satisfactory
and could not be improved much further by combining L-band
and P-band data as in the crown estimation approach.

C. Spatial Distribution of Stem and Crown Biomass

The application of crown and stem biomass algorithms on
SAR images can produce spatial distribution of these continu-
ous variables over the entire image area. However, to produce
maps that can be more readily used by fire managers, we
designed a classification approach to convert the estimated
biomass components, estimated in logarithmic values to actual
biomass range classes. Classes were assigned to biomass ranges
by simply applying thresholds to the estimated biomass values.
The thresholds were selected based on the biomass ranges and
the expected accuracy, resulting in finer class intervals for low
biomass values and larger intervals for high biomass values.
The accuracy of the classified maps was almost equal to the
estimation accuracy for logarithm of biomass and in general
were higher than the accuracy if the actual biomass values were
mapped. The thresholds for biomass classes covered, to a large
extend, the errors associated with transforming the estimated
values from logarithmic values to actual biomass. Fig. 10 shows
the classified biomass images for an area centered on the Lamar
Valley and the Soda Butte in the northwestern part of the park.
The overall accuracy of classification was determined using
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Fig. 10. Distribution of crown and stem biomass over the Lamar Valley and Soda Butte area in northeastern YNP. (a) Crown live biomass in megagrams per
hectare with classification accuracy of 84%. (b) Stem live biomass in megagrams per hectare with classification accuracy of 86%.

the standard error matrix, which resulted in 84% and 86%
accuracies for crown and stem classes, respectively.

D. Estimation of Canopy Fuel Weight

Radar backscatter responds to live biomass, and the results
above demonstrate the retrieval of crown live biomass. How-
ever, crown fires propagate through and consume both live and
dead canopy biomass, and this combined fuel load is what
is commonly used in fire modeling. Using the field-measured
dead canopy biomass, the crown biomass was converted to
total fuel weight by adjusting the values for the dead biomass
using a linear regression model (Wtcf = 0.125 + 1.108 Wc,
R2 = 0.995), where Wtcf is the total canopy fuel, and Wc is
the radar-derived crown biomass. The model is developed by a
randomly sampled data point from the forest plots. On average,
the dead material constitutes less than 10% of the total canopy
fuel that varies depending on the forest type and successional
stage. After conversion to canopy fuel, we reexamined the
accuracy of the results by cross validating the radar-derived
canopy fuel with the remaining plot data (n = 177) not used
in the development of the regression model. The coefficient of
determination was R2 = 0.85, and the cross-validated RMSE
was 1.7 Mg/ha. From the total canopy fuel, additional infor-
mation such as 1-h and 10-h branchwood fuels can be readily
estimated. These variables, although derived from allometric
equations based on forest structure, are closely correlated with
the total canopy fuel weight and are important in understanding
and predicting the fire intensity and spread [5], [21]. The radar-
derived crown biomass was converted using regression models
based on a randomly sampled plot data. The estimated values
were cross validated with the remaining plot data (n = 199)
and showed coefficient of determination of R2 = 0.83 and
R2 = 0.87, respectively, for 1-h and 10-h branchwood fuel
loads (Fig. 11).

E. Estimation of Canopy Bulk Density

Equation (6) was used to compute the canopy bulk density
(or crown bulk density) from the field-measured forest structure
assuming uniform canopy distribution along the canopy height.
This variable is strongly correlated with the canopy height.
However, height was not estimated from the AIRSAR polari-
metric data. From the field data, we examined the relationship
between crown and stem weight with canopy bulk density,
and in both cases, the individual correlations were not very
high (R2 = 0.34 with crown biomass and R2 = 0.21 with stem
biomass). However, by transforming the bulk density and stem
and crown biomass to natural logarithm to stabilize the variance
and account for the nonlinearity in the relationship, we were
able to develop a linear regression model between the bulk
density and crown and stem biomass in the form

ln(CBD) = a0 + a1 ln(Wc) + a2 ln(Ws) (8)

where a0 = −1.755, a1 = 1.895, and a2 = −0.891. Like all
the previous cases, the regression model is developed from
randomly selected plot data. We used the above relationship on
the radar estimation of crown and stem biomass and cross vali-
dated the canopy bulk density with the remaining plot data. The
result is shown in Fig. 12. The use of stem and crown biomass
together provided for more than 80% of the CBD variations
(R2 = 0.85, P < 0.00001). The cross-validated RMSE of the
CBD estimation on the logarithmic scale was approximately
0.67 kg/m3.

F. Estimation of Foliage Biomass

Using 100% moisture content, we were able to estimate the
foliage biomass or dry biomass directly from the crown biomass
estimation. From a randomly selected plot data (n = 271),
we developed a linear model (Wf = −0.5523 + 0.3856Wc,
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Fig. 11. Field-based versus radar-derived canopy branchwood fuels (with 1 : 1 line shown). (a) 1-h fuel weight in megagrams per hectare (R2 = 0.83, P <
0.00001, RMSE = 0.92 Mg/ha). (b) 10-h fuel weight in megagrams per hectare (R2 = 0.87, P < 0.00001, RMSE = 1.6 Mg/ha).

Fig. 12. Field-estimated versus radar-predicted canopy bulk density in kilo-
grams per cubic meter (log transformed) (R2 = 0.85, P < 0.00001, RMSE =
0.67 kg/m3).

R2 = 0.91) between crown and foliage biomass that was used
to estimate foliage biomass from the radar-derived crown bio-
mass for the AIRSAR image. The estimation was cross vali-
dated with the plot data not used in developing the regression
model (n = 150), and the prediction had R2 = 0.78 (P <
0.00001) and RMSE = 1.8 Mg/ha (Fig. 13).

VII. SUMMARY AND DISCUSSION

Polarimetric and interferometric SAR data were analyzed
to examine whether the sensitivity of radar backscatter mea-
surements to vegetation structure and biomass can be used to
estimate forest fire fuel parameters. We chose the YNP as the
study area and the airborne multifrequency SAR polarimetric
measurements at L-band and P-band and the interferomet-
ric estimation of surface topography at C-band to perform
the analysis. The results in this paper indicate that simple
semi-empirical models have the potential to predict canopy
fuel parameters with accuracy suitable for forest fire models
and management approaches. The overall assessment of the
models also suggested that P-band polarimetric data provided
more accurate estimates of fuel components, in particular over

Fig. 13. Field-measured versus radar-estimated foliage biomass in mega-
grams per hectare (R2 = 0.78, P < 0.00001, RMSE = 1.8 Mg/ha). Line
shows 1 : 1 relationship.

old-growth forests with developed fuel loads. Whereas fuel
loads for shrubs and low-density forests were estimated with
higher accuracy using L-band data. The best performance was
achieved when L-band and P-band HV polarizations were com-
bined to estimate the crown biomass and subsequently the total
canopy fuel weight over the entire range of fuel loads available
in the park. The estimation of crown and stem biomass when
compared with the field measurements at the plot level resulted
in R2 > 0.7 and with RMSE errors of 1.87 and 11.3 Mg/ha,
respectively, for crown and stem biomass. The classification of
the biomass to range classes produced accuracies larger than
80% as high biomass values with largest errors were all lumped
in a few classes. The development of the model and the process
of estimating the fuel load provided the following conclusions.

1) There are a number of discrepancies between the
backscatter measurements of forest biomass and the for-
est structure measured at plot level. Although reason-
able correlations were found between radar backscatter
measurements and the biomass components, the accuracy
of plot locations, the errors associated with the allo-
metric equations, and the speckle noise in radar images
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introduced a significant source of variability in the esti-
mated results. Stand-level data that resulted in averaging
and extrapolating plot data over larger areas reduced
the errors in field-based biomass components, errors due
to misregistration, and speckle noise, and improved the
correlations with the radar backscatter measurements.

2) The radar backscatter measurements in decibels were cor-
related with the logarithm of biomass components. This
introduced another source of error when transforming the
biomass components estimated in logarithmic scale to
actual biomass values. In this paper, the accuracy in stem
and crown biomass estimation and the RMSE were all
computed and reported in logarithmic values. The actual
biomass values were then classified in biomass ranges
that incorporated the errors associated with transforming
the results from logarithmic to actual values. The final
spatial distributions of biomass and canopy fuel compo-
nents were produced in classified form and with biomass
ranges suitable for wildfire simulation models.

3) Another possible source of error in directly estimating
AGLB values from radar data is the discrepancy between
the radar sensitivity to wet aboveground biomass and
the field-measured dry biomass from allometric equa-
tions. The dielectric constant and the moisture content
of biomass components (leaves, branches, and stems)
impact the radar backscatter measurements and introduce
larger variability when compared with dry biomass. In
experiments that moisture content is included in the field
measurements and incorporated in the radar data analysis,
the biomass estimation is improved [14].

4) Canopy fuel parameters such as the bulk density require
direct measurements of canopy height and canopy base
height. These parameters are difficult to measure in the
field in particular over complex terrains. In this paper,
we employed an indirect approach by developing a re-
gression model between the crown and stem biomass and
the bulk density. Although a reasonable accuracy was
found with the plot-level data, mainly located in areas
with low relief, the spatial accuracy of the results was
probably reduced over areas with high relief. In fact, the
accuracy for all fuel parameters estimated in this paper
was assessed only with plot data, and no independent
assessment of the spatial accuracy of the results over the
entire area covered by radar images was performed.

5) In areas with large topographical variations such as the
YNP, accurate estimations of surface elevation and slopes
are needed to correct the backscatter measurements and
improve the biomass estimation by modifying the contri-
bution of scattering mechanisms as in (3), (4), and (7).
In such landscapes, direct estimation by linear regression
approaches may introduce large errors in the predicted
biomass components from SAR images. Inclusion of sur-
face elevation acquired by interferometric sensors along
with the polarimetric data has dramatically improved the
results in this paper.

6) Variations in surface characteristics such as soil moisture
and roughness impact both the radar backscatter mea-
surements and the retrieval of vegetation structure. We

have reduced the impact of these parameters in biomass
estimation by using a semiempirical approach. Determi-
nation of unknown coefficients in (7) using radar data will
calibrate the equations for the moisture and roughness
values of the surface. In general, this process will result
in a site-specific estimation algorithm for forest biomass
components. The errors associated with differences in
soil moisture and surface roughness parameters of differ-
ent stands and plots will be reflected in the overall esti-
mation errors. However, we expect the impact of surface
parameters to be small for various reasons: the algorithm
is strongly dependent on the cross-polarized HV term,
which is less sensitive to surface parameters, and for
forests with high biomass density, the backscatter values
are less sensitive to surface parameters because of the
attenuation of the radar signal before reaching the surface.
Further study is required to accurately quantify the effects
of surface parameters to the estimation algorithm.

Our results suggest that crown biomass and height are the
most important structural variables to estimate forest canopy
fuel loads. Polarimetric SAR data at longer wavelengths such
as P-band provide a more accurate estimate of crown biomass
in particular for medium to dense forest fuels. Saturation of the
radar signal at shorter wavelength due to attenuation through
the foliage and the crown layer is the main reason for the
better performance of P-band data versus L-band. For other
parameters such as canopy height, accurate estimates can be
achieved either by radar interferometry [13] or laser altimetry
by lidar sensors [11]. This conclusion introduces a new area of
research for wildfire applications rarely discussed in the radar
remote sensing literature. In most forestry applications of radar
remote sensing, the emphasis has been on the estimation of the
total AGLB [14], [24], [25].

We expect that the general form of the algorithm introduced
in this paper be applicable for other regions and forest types. In
general, the application of the algorithm with the same coeffi-
cients will provide the distribution of relative fuel loads across
the landscape and forest types for any region. However, for the
absolute accuracy, the algorithm must be calibrated using radar
images and few forest plots acquired over the new region.

The results from this paper also suggest that space-
borne polarimetric radar measurements at longer wavelengths
(P-band) can be used as a potential tool for forest fire man-
agement. Different classes of canopy fuel components, such as
the ones produced in this paper, can be readily integrated in
different forest fire models. The high spatial resolution of radar
images and the all-weather data collection provide additional
capability for monitoring areas with potential fire hazards,
areas under the fire, and the area and intensity of the postfire
disturbance.
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